STGHTN: Spatial-temporal gated hybrid transformer network for traffic flow forecasting

被引:24
|
作者
Liu, Jiansong [1 ]
Kang, Yan [1 ]
Li, Hao [1 ]
Wang, Haining [1 ]
Yang, Xuekun [1 ]
机构
[1] Yunnan Univ, Sch Software, Kunming 650500, Yunnan, Peoples R China
基金
中国国家自然科学基金;
关键词
Graph convolution network; Temporal convolution network; Transformer; Spatial-temporal forecast; PREDICTION; VOLUME;
D O I
10.1007/s10489-022-04122-x
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Accurate traffic forecasting is a critical function of intelligent transportation systems, which remains challenging due to the complex spatial and temporal dependence of traffic data. GNN-based traffic forecasting models typically utilize predefined graphical structures based on prior knowledge and do not adapt well to dynamically changing traffic characteristics, which may limit their performance. The transformer is a compelling architecture with an innate global self-attention mechanism, but cannot capture low-level detail very well. In this paper, we propose a novel Spatial-Temporal Gated Hybrid Transformer Network (STGHTN), which leverages local features from temporal gated convolution, spatial gated graph convolution respectively and global features by transformer to further improve the traffic flow forecasting results. First, in the temporal dimension, we take full advantage of the local properties of temporal gated convolution and the global properties of transformer to effectively fuse short-term and long-term temporal dependence. Second, we mutually integrate two modules to complement each representation by utilizing spatial gated graph convolution to extract local spatial dependence and transformer to extract global spatial dependence. Furthermore, we propose a multi-graph model that constructs a road connection graph, a similarity graph, and an adaptive dynamic graph to exploit the static and dynamic associations between road networks. Experiments on four real datasets confirm the proposed method's state-of-the-art performance. Our implementation of the STGHTN code via PyTorch is available at hups://github.comManSoL/STGHTN.
引用
收藏
页码:12472 / 12488
页数:17
相关论文
共 50 条
  • [41] Dynamic spatial-temporal graph convolutional recurrent networks for traffic flow forecasting
    Xia, Zhichao
    Zhang, Yong
    Yang, Jielong
    Xie, Linbo
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 240
  • [42] DSTAGCN: Dynamic Spatial-Temporal Adjacent Graph Convolutional Network for Traffic Forecasting
    Zheng, Qi
    Zhang, Yaying
    IEEE TRANSACTIONS ON BIG DATA, 2023, 9 (01) : 241 - 253
  • [43] Spatial-Temporal Dynamic Graph Convolutional Network With Interactive Learning for Traffic Forecasting
    Liu, Aoyu
    Zhang, Yaying
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2024, 25 (07) : 7645 - 7660
  • [44] Transformer-enhanced periodic temporal convolution network for long short-term traffic flow forecasting
    Ren, Qianqian
    Li, Yang
    Liu, Yong
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 227
  • [45] Learning Dynamic Spatial-Temporal Dependence in Traffic Forecasting
    Ren, Chaoyu
    Li, Yuezhu
    IEEE ACCESS, 2024, 12 : 190039 - 190053
  • [46] Attention-based spatial-temporal adaptive dual-graph convolutional network for traffic flow forecasting
    Xia, Dawen
    Shen, Bingqi
    Geng, Jian
    Hu, Yang
    Li, Yantao
    Li, Huaqing
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (23) : 17217 - 17231
  • [47] Hierarchical Spatio-Temporal Graph Convolutional Networks and Transformer Network for Traffic Flow Forecasting
    Huo, Guangyu
    Zhang, Yong
    Wang, Boyue
    Gao, Junbin
    Hu, Yongli
    Yin, Baocai
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2023, 24 (04) : 3855 - 3867
  • [48] Multi-Granularity Temporal Embedding Transformer Network for Traffic Flow Forecasting
    Huang, Jiani
    Yan, He
    Chen, Qixiu
    Liu, Yingan
    SENSORS, 2024, 24 (24)
  • [49] A Spatial-Temporal Transformer Network for City-Level Cellular Traffic Analysis and Prediction
    Gu, Bo
    Zhan, Junhui
    Gong, Shimin
    Liu, Wanquan
    Su, Zhou
    Guizani, Mohsen
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2023, 22 (12) : 9412 - 9423
  • [50] Dynamic spatial-temporal network for traffic forecasting based on joint latent space representation
    Yu, Qian
    Ma, Liang
    Lai, Pei
    Guo, Jin
    IET INTELLIGENT TRANSPORT SYSTEMS, 2024, 18 (08) : 1369 - 1384