Emotion Classification Based on Transformer and CNN for EEG Spatial-Temporal Feature Learning

被引:9
|
作者
Yao, Xiuzhen [1 ,2 ]
Li, Tianwen [2 ,3 ]
Ding, Peng [1 ,2 ]
Wang, Fan [1 ,2 ]
Zhao, Lei [2 ,3 ]
Gong, Anmin [4 ]
Nan, Wenya [5 ]
Fu, Yunfa [1 ,2 ]
机构
[1] Kunming Univ Sci & Technol, Fac Informat Engn & Automat, Kunming 650500, Peoples R China
[2] Kunming Univ Sci & Technol, Brain Cognit & Brain Comp Intelligence Integrat Gr, Kunming 650500, Peoples R China
[3] Kunming Univ Sci & Technol, Fac Sci, Kunming 650500, Peoples R China
[4] Chinese Peoples Armed Police Force Engn Univ, Sch Informat Engn, Xian 710086, Peoples R China
[5] Shanghai Normal Univ, Coll Educ, Dept Psychol, Shanghai 200234, Peoples R China
基金
中国国家自然科学基金;
关键词
EEG; emotion classification; transformer; CNN; multi-head attention;
D O I
10.3390/brainsci14030268
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Objectives: The temporal and spatial information of electroencephalogram (EEG) signals is crucial for recognizing features in emotion classification models, but it excessively relies on manual feature extraction. The transformer model has the capability of performing automatic feature extraction; however, its potential has not been fully explored in the classification of emotion-related EEG signals. To address these challenges, the present study proposes a novel model based on transformer and convolutional neural networks (TCNN) for EEG spatial-temporal (EEG ST) feature learning to automatic emotion classification. Methods: The proposed EEG ST-TCNN model utilizes position encoding (PE) and multi-head attention to perceive channel positions and timing information in EEG signals. Two parallel transformer encoders in the model are used to extract spatial and temporal features from emotion-related EEG signals, and a CNN is used to aggregate the EEG's spatial and temporal features, which are subsequently classified using Softmax. Results: The proposed EEG ST-TCNN model achieved an accuracy of 96.67% on the SEED dataset and accuracies of 95.73%, 96.95%, and 96.34% for the arousal-valence, arousal, and valence dimensions, respectively, for the DEAP dataset. Conclusions: The results demonstrate the effectiveness of the proposed ST-TCNN model, with superior performance in emotion classification compared to recent relevant studies. Significance: The proposed EEG ST-TCNN model has the potential to be used for EEG-based automatic emotion recognition.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Feature Transfer Learning in EEG-based Emotion Recognition
    Xue, Bing
    Lv, Zhao
    Xue, Jingyi
    2020 CHINESE AUTOMATION CONGRESS (CAC 2020), 2020, : 3608 - 3611
  • [32] Unsupervised Feature Learning for EEG-based Emotion Recognition
    Lan, Zirui
    Sourina, Olga
    Wang, Lipo
    Scherer, Reinhold
    Mueller-Putz, Gernot
    2017 INTERNATIONAL CONFERENCE ON CYBERWORLDS (CW), 2017, : 182 - 185
  • [33] Social Network Information Diffusion Prediction Based on Spatial-Temporal Transformer
    Fan W.
    Liu Y.
    Jisuanji Yanjiu yu Fazhan/Computer Research and Development, 2022, 59 (08): : 1757 - 1769
  • [34] EEG-based anxiety emotion classification using an optimized convolutional neural network and transformer
    Qiang Li
    Yuhan Sun
    Yuting Xie
    Yan Zhou
    Signal, Image and Video Processing, 2025, 19 (6)
  • [35] Emotion recognition using spatial-temporal EEG features through convolutional graph attention network
    Li, Zhongjie
    Zhang, Gaoyan
    Wang, Longbiao
    Wei, Jianguo
    Dang, Jianwu
    JOURNAL OF NEURAL ENGINEERING, 2023, 20 (01)
  • [36] Spatial-temporal graph transformer network for skeleton-based temporal action segmentation
    Xiaoyan Tian
    Ye Jin
    Zhao Zhang
    Peng Liu
    Xianglong Tang
    Multimedia Tools and Applications, 2024, 83 : 44273 - 44297
  • [37] Transformer-Based Multimodal Spatial-Temporal Fusion for Gait Recognition
    Zhang, Jikai
    Ji, Mengyu
    He, Yihao
    Guo, Dongliang
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2024, PT XV, 2025, 15045 : 494 - 507
  • [38] Spatial-temporal graph transformer network for skeleton-based temporal action segmentation
    Tian, Xiaoyan
    Jin, Ye
    Zhang, Zhao
    Liu, Peng
    Tang, Xianglong
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (15) : 44273 - 44297
  • [39] An efficient spatial-temporal transformer with temporal aggregation and spatial memory for traffic forecasting
    Liu, Aoyu
    Zhang, Yaying
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 250
  • [40] EEG-based Cognitive Load Classification using Feature Masked Autoencoding and Emotion Transfer Learning
    Pulver, Dustin
    Angkan, Prithila
    Hungler, Paul
    Etemad, Ali
    PROCEEDINGS OF THE 25TH INTERNATIONAL CONFERENCE ON MULTIMODAL INTERACTION, ICMI 2023, 2023, : 190 - 197