On the spectra of multidimensional normal discrete Hausdorff operators

被引:0
|
作者
Mirotin, Adolf R. [1 ,2 ,3 ]
机构
[1] Francisk Skorina Gomel State Univ, Dept Math & Programming Technol, Gomel, BELARUS
[2] Southern Fed Univ, Reg Math Ctr, Rostov Na Donu, Russia
[3] Francisk Skorina Gomel State Univ, Dept Math & Programming Technol, Gomel 246019, BELARUS
关键词
discrete Hausdorff operator; Lebesgue space; pantograph equation; rotationally invariance; spectrum; Weyl spectrum; SPACES; BOUNDEDNESS;
D O I
10.1002/mma.9943
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the general case of normal discrete Hausdorff operators in L2(Double-struck capital Rd)$$ {L} circumflex 2\left({\mathrm{\mathbb{R}}} circumflex d\right) $$ is studied. The main result states that under some natural arithmetic condition, the spectrum of such an operator is rotationally invariant. Several special cases and applications are considered.
引用
收藏
页码:6652 / 6665
页数:14
相关论文
共 50 条