Overdetermined elliptic problems in nontrivial contractible domains of the sphere

被引:0
|
作者
Ruiz, David [1 ]
Sicbaldi, Pieralberto [1 ,2 ]
Wu, Jing [3 ]
机构
[1] Univ Granada, Dept Anal Matemat, IMAG, Campus Fuentenueva, Granada 18071, Spain
[2] Aix Marseille Univ, CNRS, Cent Marseille I2M, Marseille, France
[3] Univ Granada, Fac Ciencias, Dept Anal Matematico, Granada 18071, Spain
来源
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES | 2023年 / 180卷
关键词
Overdetermined boundary conditions; Semilinear elliptic problems; Bifurcation theory; 1ST EIGENVALUE; POSITIVE SOLUTIONS; EXTREMAL DOMAINS; EXISTENCE; UNIQUENESS; EQUATIONS; SYMMETRY; OPERATOR; SPACE;
D O I
10.1016/j.matpur.2023.10.009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we prove the existence of nontrivial contractible domains Omega subset of S-d, d >= 2, such that the overdetermined elliptic problem {-epsilon Delta(g)u + u - u(p) = 0 in Omega, u > 0 in Omega, u = 0 on partial derivative Omega, partial derivative(nu)u = constant on partial derivative Omega, admits a positive solution. Here Delta(g) is the Laplace-Beltrami operator in the unit sphere S-d with respect to the canonical round metric g, epsilon > 0 is a small real parameter and 1 < p < d+2/d-2 (p > 1 if d = 2). These domains are perturbations of S-d \ D, where D is a small geodesic ball. This shows in particular that Serrin's theorem for overdetermined problems in the Euclidean space cannot be generalized to the sphere even for contractible domains. (c) 2023 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:151 / 187
页数:37
相关论文
共 50 条
  • [21] Multiplicity and symmetry breaking for supercritical elliptic problems in exterior domains
    Boscaggin, Alberto
    Colasuonno, Francesca
    Noris, Benedetta
    Weth, Tobias
    NONLINEARITY, 2024, 37 (10)
  • [22] DELAUNAY TYPE DOMAINS FOR AN OVERDETERMINED ELLIPTIC PROBLEM IN Sn x R AND Hn x R
    Morabito, Filippo
    Sicbaldi, Pieralberto
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2016, 22 (01) : 1 - 28
  • [23] Overdetermined boundary value problems with strongly nonlinear elliptic PDE
    Lv, Boqiang
    Li, Fengquan
    Zou, Weilin
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2012, (10) : 1 - 17
  • [24] Uniqueness of solutions for nonlinear elliptic problems with supercritical growth in ramified domains
    Molle, Riccardo
    Passaseo, Donato
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2024,
  • [25] Supercritical elliptic problems on nonradial domains via a nonsmooth variational approach
    Cowan, Craig
    Moameni, Abbas
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 341 : 292 - 323
  • [26] Nonexistence of Nontrivial Weak Solutions for Anisotropic Elliptic Problems
    Feng, Tingfu
    FILOMAT, 2018, 32 (15) : 5415 - 5420
  • [28] Nontrivial solutions of discrete elliptic boundary value problems
    Tang, Hengsheng
    Luo, Wei
    Li, Xu
    Ma, Manjun
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2008, 55 (08) : 1854 - 1860
  • [29] ON AN OVERDETERMINED ELLIPTIC PROBLEM
    Hauswirth, Laurent
    Helein, Frederic
    Pacard, Frank
    PACIFIC JOURNAL OF MATHEMATICS, 2011, 250 (02) : 319 - 334
  • [30] Existence of multiple nontrivial solutions for semilinear elliptic problems
    El Amrouss, A. R.
    Moradi, F.
    Moussaoui, M.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2009, 57 (07) : 1115 - 1126