Growing Crystals for X-ray Free-Electron Laser Structural Studies of Biomolecules and Their Complexes

被引:2
作者
Nanev, Christo N. [1 ]
Saridakis, Emmanuel [2 ]
Chayen, Naomi E. [3 ]
机构
[1] Rostislaw Kaischew Inst Phys Chem, Bulgarian Acad Sci, Sofia 1113, Bulgaria
[2] Inst Nanosci & Nanotechnol, Natl Ctr Sci Res Demokritos, Athens 15310, Greece
[3] Imperial Coll London, Fac Med, Dept Metab Digest & Reprod, Div Syst Med, London W12 0NN, England
关键词
macromolecular crystallization; crystallization theory; microcrystals; X-ray crystallography; X-ray free-electron laser; serial femtosecond crystallography; EGG-WHITE LYSOZYME; SERIAL CRYSTALLOGRAPHY; CRYSTALLIZATION; GROWTH;
D O I
10.3390/ijms242216336
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Currently, X-ray crystallography, which typically uses synchrotron sources, remains the dominant method for structural determination of proteins and other biomolecules. However, small protein crystals do not provide sufficiently high-resolution diffraction patterns and suffer radiation damage; therefore, conventional X-ray crystallography needs larger protein crystals. The burgeoning method of serial crystallography using X-ray free-electron lasers (XFELs) avoids these challenges: it affords excellent structural data from weakly diffracting objects, including tiny crystals. An XFEL is implemented by irradiating microjets of suspensions of microcrystals with very intense X-ray beams. However, while the method for creating microcrystalline microjets is well established, little attention is given to the growth of high-quality nano/microcrystals suitable for XFEL experiments. In this study, in order to assist the growth of such crystals, we calculate the mean crystal size and the time needed to grow crystals to the desired size in batch crystallization (the predominant method for preparing the required microcrystalline slurries); this time is reckoned theoretically both for microcrystals and for crystals larger than the upper limit of the Gibbs-Thomson effect. The impact of the omnipresent impurities on the growth of microcrystals is also considered quantitatively. Experiments, performed with the model protein lysozyme, support the theoretical predictions.
引用
收藏
页数:17
相关论文
共 36 条
[1]   Magnetic orientation as a tool to study the initial stage of crystallization of lysozyme [J].
Ataka, M ;
Katoh, E ;
Wakayama, NI .
JOURNAL OF CRYSTAL GROWTH, 1997, 173 (3-4) :592-596
[2]  
Atkins P.W., 2002, Atkins Physical Chemistry, V7th ed., P1013
[3]   Successful sample preparation for serial crystallography experiments [J].
Beale, John H. ;
Bolton, Rachel ;
Marshall, Stephen A. ;
Beale, Emma V. ;
Carr, Stephen B. ;
Ebrahim, Ali ;
Moreno-Chicano, Tadeo ;
Hough, Michael A. ;
Worrall, Jonathan A. R. ;
Tews, Ivo ;
Owen, Robin L. .
JOURNAL OF APPLIED CRYSTALLOGRAPHY, 2019, 52 :1385-1396
[4]   High-Resolution Protein Structure Determination by Serial Femtosecond Crystallography [J].
Boutet, Sebastien ;
Lomb, Lukas ;
Williams, Garth J. ;
Barends, Thomas R. M. ;
Aquila, Andrew ;
Doak, R. Bruce ;
Weierstall, Uwe ;
DePonte, Daniel P. ;
Steinbrener, Jan ;
Shoeman, Robert L. ;
Messerschmidt, Marc ;
Barty, Anton ;
White, Thomas A. ;
Kassemeyer, Stephan ;
Kirian, Richard A. ;
Seibert, M. Marvin ;
Montanez, Paul A. ;
Kenney, Chris ;
Herbst, Ryan ;
Hart, Philip ;
Pines, Jack ;
Haller, Gunther ;
Gruner, Sol M. ;
Philipp, Hugh T. ;
Tate, Mark W. ;
Hromalik, Marianne ;
Koerner, Lucas J. ;
van Bakel, Niels ;
Morse, John ;
Ghonsalves, Wilfred ;
Arnlund, David ;
Bogan, Michael J. ;
Caleman, Carl ;
Fromme, Raimund ;
Hampton, Christina Y. ;
Hunter, Mark S. ;
Johansson, Linda C. ;
Katona, Gergely ;
Kupitz, Christopher ;
Liang, Mengning ;
Martin, Andrew V. ;
Nass, Karol ;
Redecke, Lars ;
Stellato, Francesco ;
Timneanu, Nicusor ;
Wang, Dingjie ;
Zatsepin, Nadia A. ;
Schafer, Donald ;
Defever, James ;
Neutze, Richard .
SCIENCE, 2012, 337 (6092) :362-364
[5]   THE SOLUBILITY OF THE TETRAGONAL FORM OF HEN EGG-WHITE LYSOZYME FROM PH 4.0 TO 5.4 [J].
CACIOPPO, E ;
PUSEY, ML .
JOURNAL OF CRYSTAL GROWTH, 1991, 114 (03) :286-292
[6]   Femtosecond X-ray protein nanocrystallography [J].
Chapman, Henry N. ;
Fromme, Petra ;
Barty, Anton ;
White, Thomas A. ;
Kirian, Richard A. ;
Aquila, Andrew ;
Hunter, Mark S. ;
Schulz, Joachim ;
DePonte, Daniel P. ;
Weierstall, Uwe ;
Doak, R. Bruce ;
Maia, Filipe R. N. C. ;
Martin, Andrew V. ;
Schlichting, Ilme ;
Lomb, Lukas ;
Coppola, Nicola ;
Shoeman, Robert L. ;
Epp, Sascha W. ;
Hartmann, Robert ;
Rolles, Daniel ;
Rudenko, Artem ;
Foucar, Lutz ;
Kimmel, Nils ;
Weidenspointner, Georg ;
Holl, Peter ;
Liang, Mengning ;
Barthelmess, Miriam ;
Caleman, Carl ;
Boutet, Sebastien ;
Bogan, Michael J. ;
Krzywinski, Jacek ;
Bostedt, Christoph ;
Bajt, Sasa ;
Gumprecht, Lars ;
Rudek, Benedikt ;
Erk, Benjamin ;
Schmidt, Carlo ;
Hoemke, Andre ;
Reich, Christian ;
Pietschner, Daniel ;
Strueder, Lothar ;
Hauser, Guenter ;
Gorke, Hubert ;
Ullrich, Joachim ;
Herrmann, Sven ;
Schaller, Gerhard ;
Schopper, Florian ;
Soltau, Heike ;
Kuehnel, Kai-Uwe ;
Messerschmidt, Marc .
NATURE, 2011, 470 (7332) :73-U81
[7]   AN AUTOMATED-SYSTEM FOR MICROBATCH PROTEIN CRYSTALLIZATION AND SCREENING [J].
CHAYEN, NE ;
STEWART, PDS ;
MAEDER, DL ;
BLOW, DM .
JOURNAL OF APPLIED CRYSTALLOGRAPHY, 1990, 23 :297-302
[8]  
Chernov A.A., 1984, Modern Crystallography III: Crystal Growth, P1
[9]   Crystallization physics in biomacromolecular solutions [J].
Chernov, AA ;
Segre, PN ;
Holmes, AM .
CRYSTAL GROWTH - FROM FUNDAMENTALS TO TECHNOLOGY, 2004, :95-113
[10]   Protein crystals and their growth [J].
Chernov, AA .
JOURNAL OF STRUCTURAL BIOLOGY, 2003, 142 (01) :3-21