Ungauged Basin Flood Prediction Using Long Short-Term Memory and Unstructured Social Media Data

被引:2
|
作者
Lee, Jeongha [1 ,2 ]
Hwang, Seokhwan [2 ]
机构
[1] Univ Sci & Technol, Civil & Environm Engn, Daejeon 305333, South Korea
[2] Korea Inst Civil Engn & Bldg Technol, Goyang 10223, South Korea
基金
新加坡国家研究基金会;
关键词
flood prediction; long short-term memory; social media; ungauged basin; unstructured data;
D O I
10.3390/w15213818
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Floods are highly perilous and recurring natural disasters that cause extensive property damage and threaten human life. However, the paucity of hydrological observational data hampers the precision of physical flood models, particularly in ungauged basins. Recent advances in disaster monitoring have explored the potential of social media as a valuable source of information. This study investigates the spatiotemporal consistency of social media data during flooding events and evaluates its viability as a substitute for hydrological data in ungauged catchments. To assess the utility of social media as an input factor for flood prediction models, the study conducted time-series and spatial correlation analyses by employing spatial scan statistics and confusion matrices. Subsequently, a long short-term memory model was used to forecast the outflow volume in the Ui Stream basin in South Korea. A comparative analysis of various input factor combinations revealed that datasets incorporating rainfall, outflow models, and social media data exhibited the highest accuracy, with a Nash-Sutcliffe efficiency of 94%, correlation coefficient of 97%, and a minimal normalized root mean square error of 0.92%. This study demonstrated the potential of social media data as a viable alternative for data-scarce basins, highlighting its effectiveness in enhancing flood prediction accuracy.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Long-term inflow forecast using meteorological data based on long short-term memory neural networks
    Zhao, Hongye
    Liao, Shengli
    Song, Yitong
    Fang, Zhou
    Ma, Xiangyu
    Zhou, Binbin
    JOURNAL OF HYDROINFORMATICS, 2024, 26 (05) : 954 - 971
  • [42] An accident diagnosis algorithm using long short-term memory
    Yang, Jaemin
    Kim, Jonghyun
    NUCLEAR ENGINEERING AND TECHNOLOGY, 2018, 50 (04) : 582 - 588
  • [43] Long Short-Term Memory Algorithm for Rainfall Prediction Based on El-Nino and IOD Data
    Haq, Dina Zatusiva
    Novitasari, Dian Candra Rini
    Hamid, Abdulloh
    Ulinnuha, Nurissaidah
    Arnita
    Farida, Yuniar
    Nugraheni, R. R. Diah
    Nariswari, Rinda
    Ilham
    Rohayani, Hetty
    Pramulya, Rahmat
    Widjayanto, Ari
    5TH INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND COMPUTATIONAL INTELLIGENCE 2020, 2021, 179 : 829 - 837
  • [44] Short-term power load forecasting using integrated methods based on long short-term memory
    WenJie Zhang
    Jian Qin
    Feng Mei
    JunJie Fu
    Bo Dai
    WenWu Yu
    Science China Technological Sciences, 2020, 63 : 614 - 624
  • [45] Bottleneck Based Gridlock Prediction in an Urban Road Network Using Long Short-Term Memory
    Mon, Ei Ei
    Ochiai, Hideya
    Saivichit, Chaiyachet
    Aswakul, Chaodit
    ELECTRONICS, 2020, 9 (09) : 1 - 20
  • [46] Comparison of Multilayer Perceptron with an Optimal Activation Function and Long Short-Term Memory for Rainfall-Runoff Simulations and Ungauged Catchment Runoff Prediction
    Shin, Mun-Ju
    Jung, Yong
    WATER RESOURCES MANAGEMENT, 2024,
  • [47] Short-term power load forecasting using integrated methods based on long short-term memory
    Zhang, WenJie
    Qin, Jian
    Mei, Feng
    Fu, JunJie
    Dai, Bo
    Yu, WenWu
    SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2020, 63 (04) : 614 - 624
  • [48] Short-term power prediction of photovoltaic power station based on long short-term memory-back-propagation
    Hua, Chi
    Zhu, Erxi
    Kuang, Liang
    Pi, Dechang
    INTERNATIONAL JOURNAL OF DISTRIBUTED SENSOR NETWORKS, 2019, 15 (10)
  • [49] Short-term power load forecasting using integrated methods based on long short-term memory
    ZHANG WenJie
    QIN Jian
    MEI Feng
    FU JunJie
    DAI Bo
    YU WenWu
    Science China(Technological Sciences), 2020, (04) : 614 - 624
  • [50] Long Short-Term Memory Forecasting for COVID19 Data
    Milivojevic, Milan S.
    Gavrovska, Ana
    2020 28TH TELECOMMUNICATIONS FORUM (TELFOR), 2020, : 276 - 279