Effective drift estimates for random walks on graph products

被引:0
|
作者
Chawla, Kunal [1 ]
机构
[1] Univ Toronto, Toronto, ON, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
right-angled Artin group; random walk; drift; hyperbolic group; graph product; pivoting; POISSON FORMULA; THEOREM;
D O I
10.1214/23-ECP546
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We find uniform lower bounds on the drift for a large family of random walks on graph products, of the form P(|Z(n)| < kn) <= e(-kappa n) for k > 0. This includes the simple random walk for a right-angled Artin group with a sparse defining graph. This is done by extending an argument of Gouezel, along with the combinatorial notion of a piling introduced by Crisp, Godelle, and Wiest. We do not use any moment conditions, instead considering random walks which alternate between one measure uniformly distributed on vertex groups, and another measure over which we make no assumptions.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Heat kernel estimates for random walks with degenerate weights
    Andres, Sebastian
    Deuschel, Jean-Dominique
    Slowik, Martin
    ELECTRONIC JOURNAL OF PROBABILITY, 2016, 21
  • [22] Random walks and the effective resistance sum rules
    Chen, Haiyan
    DISCRETE APPLIED MATHEMATICS, 2010, 158 (15) : 1691 - 1700
  • [23] Characteristics of random walks on wreath products of groups
    Dyubina A.
    Journal of Mathematical Sciences, 2001, 107 (5) : 4166 - 4171
  • [24] 2–3 Paths in a Lattice Graph: Random Walks
    Ya. M. Erusalimskii
    Mathematical Notes, 2018, 104 : 395 - 403
  • [25] Random Walks on the Bipartite-Graph for Personalized Recommendation
    Pei, Zhong-you
    Chiang, Chun-heng
    Lin, Wen-bin
    2013 INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND ARTIFICIAL INTELLIGENCE (ICCSAI 2013), 2013, : 97 - 102
  • [26] FlashWalker: An In-Storage Accelerator for Graph Random Walks
    Niu, Fuping
    Yue, Jianhui
    Shen, Jiangqiu
    Liao, Xiaofei
    Liu, Haikun
    Jin, Hai
    2022 IEEE 36TH INTERNATIONAL PARALLEL AND DISTRIBUTED PROCESSING SYMPOSIUM (IPDPS 2022), 2022, : 1063 - 1073
  • [27] DRIFT OF RANDOM WALKS ON ABELIAN COVERS OF FINITE VOLUME HOMOGENEOUS SPACES
    Benard, Timothee
    BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 2023, 151 (03): : 407 - 434
  • [28] Drift parameter estimation in fractional diffusions driven by perturbed random walks
    Bertin, Karine
    Torres, Soledad
    Tudor, Ciprian A.
    STATISTICS & PROBABILITY LETTERS, 2011, 81 (02) : 243 - 249
  • [29] TRANSITION PHENOMENA FOR LADDER EPOCHS OF RANDOM WALKS WITH SMALL NEGATIVE DRIFT
    Wachtel, Vitali
    ADVANCES IN APPLIED PROBABILITY, 2009, 41 (04) : 1189 - 1214
  • [30] Some Hecke algebra products and corresponding random walks
    Du, Rosena R. X.
    Stanley, Richard P.
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2010, 31 (01) : 159 - 168