Existence and regularity for nonlinear parabolic double obstacle problems

被引:0
作者
Byun, Sun-Sig [1 ]
Ryu, Seungjin [2 ]
机构
[1] Seoul Natl Univ, Res Inst Math, Dept Math Sci, Seoul 08826, South Korea
[2] Univ Seoul, Dept Math, Seoul 02504, South Korea
关键词
Calderon-Zygmund estimate; double obstacle; variational inequality; FREE-BOUNDARY REGULARITY; REIFENBERG-FLAT;
D O I
10.1088/1361-6544/ace875
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study nonlinear parabolic equations of p-Laplacian type with irregular double obstacles to establish the existence and an optimal global Calderon-Zygmund theory.
引用
收藏
页码:4785 / 4809
页数:25
相关论文
共 21 条
  • [1] Gradient estimates for a class of parabolic systems
    Acerbi, Emilio
    Mingione, Giuseppe
    [J]. DUKE MATHEMATICAL JOURNAL, 2007, 136 (02) : 285 - 320
  • [2] Degenerate problems with irregular obstacles
    Boegelein, Verena
    Duzaar, Frank
    Mingione, Giuseppe
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2011, 650 : 107 - 160
  • [3] The obstacle problem for parabolic minimizers
    Bogelein, Verena
    Duzaar, Frank
    Scheven, Christoph
    [J]. JOURNAL OF EVOLUTION EQUATIONS, 2017, 17 (04) : 1273 - 1310
  • [4] Gradient estimates for nonlinear elliptic double obstacle problems
    Byun, Sun-Sig
    Ryu, Seungjin
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2020, 194 (194)
  • [5] Parabolic Obstacle Problem with Measurable Data in Generalized Morrey Spaces
    Byun, Sun-Sig
    Softova, Lubomira
    [J]. ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2016, 35 (02): : 153 - 171
  • [6] GLOBAL WEIGHTED ESTIMATES FOR NONLINEAR ELLIPTIC OBSTACLE PROBLEMS OVER REIFENBERG DOMAINS
    Byun, Sun-Sig
    Cho, Yumi
    Palagachev, Dian K.
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 143 (06) : 2527 - 2541
  • [7] Nonlinear gradient estimates for parabolic obstacle problems in non-smooth domains
    Byun, Sun-Sig
    Cho, Yumi
    [J]. MANUSCRIPTA MATHEMATICA, 2015, 146 (3-4) : 539 - 558
  • [8] Global gradient estimates for general nonlinear parabolic equations in nonsmooth domains
    Byun, Sun-Sig
    Ok, Jihoon
    Ryu, Seungjin
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 254 (11) : 4290 - 4326
  • [9] Calderon-Zygmund theory for nonlinear elliptic problems with irregular obstacles
    Byun, Sun-Sig
    Cho, Yumi
    Wang, Lihe
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2012, 263 (10) : 3117 - 3143
  • [10] Evans L. C., 2010, GRADUATE STUDIES MAT, V19, P19