Existence and regularity for nonlinear parabolic double obstacle problems

被引:0
作者
Byun, Sun-Sig [1 ]
Ryu, Seungjin [2 ]
机构
[1] Seoul Natl Univ, Res Inst Math, Dept Math Sci, Seoul 08826, South Korea
[2] Univ Seoul, Dept Math, Seoul 02504, South Korea
关键词
Calderon-Zygmund estimate; double obstacle; variational inequality; FREE-BOUNDARY REGULARITY; REIFENBERG-FLAT;
D O I
10.1088/1361-6544/ace875
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study nonlinear parabolic equations of p-Laplacian type with irregular double obstacles to establish the existence and an optimal global Calderon-Zygmund theory.
引用
收藏
页码:4785 / 4809
页数:25
相关论文
共 21 条
[1]   Gradient estimates for a class of parabolic systems [J].
Acerbi, Emilio ;
Mingione, Giuseppe .
DUKE MATHEMATICAL JOURNAL, 2007, 136 (02) :285-320
[2]  
[Anonymous], 1997, Notices Amer. Math. Soc.
[3]   Degenerate problems with irregular obstacles [J].
Boegelein, Verena ;
Duzaar, Frank ;
Mingione, Giuseppe .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2011, 650 :107-160
[4]   The obstacle problem for parabolic minimizers [J].
Bogelein, Verena ;
Duzaar, Frank ;
Scheven, Christoph .
JOURNAL OF EVOLUTION EQUATIONS, 2017, 17 (04) :1273-1310
[5]   Gradient estimates for nonlinear elliptic double obstacle problems [J].
Byun, Sun-Sig ;
Ryu, Seungjin .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2020, 194
[6]   Parabolic Obstacle Problem with Measurable Data in Generalized Morrey Spaces [J].
Byun, Sun-Sig ;
Softova, Lubomira .
ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2016, 35 (02) :153-171
[7]   GLOBAL WEIGHTED ESTIMATES FOR NONLINEAR ELLIPTIC OBSTACLE PROBLEMS OVER REIFENBERG DOMAINS [J].
Byun, Sun-Sig ;
Cho, Yumi ;
Palagachev, Dian K. .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 143 (06) :2527-2541
[8]   Nonlinear gradient estimates for parabolic obstacle problems in non-smooth domains [J].
Byun, Sun-Sig ;
Cho, Yumi .
MANUSCRIPTA MATHEMATICA, 2015, 146 (3-4) :539-558
[9]   Global gradient estimates for general nonlinear parabolic equations in nonsmooth domains [J].
Byun, Sun-Sig ;
Ok, Jihoon ;
Ryu, Seungjin .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 254 (11) :4290-4326
[10]   Calderon-Zygmund theory for nonlinear elliptic problems with irregular obstacles [J].
Byun, Sun-Sig ;
Cho, Yumi ;
Wang, Lihe .
JOURNAL OF FUNCTIONAL ANALYSIS, 2012, 263 (10) :3117-3143