A DETOUR ON A CLASS OF NONLOCAL DEGENERATE OPERATORS

被引:0
|
作者
Schiera, Delia [1 ]
机构
[1] Univ Lisbon, Dept Matemat, Inst Super Tecn, Ave Rovisco Pais, P-1049001 Lisbon, Portugal
关键词
Maximum and comparison principles; Fully nonlinear degenerate elliptic PDE; Nonlocal operators; Eigenvalue problem; VISCOSITY SOLUTIONS; MAXIMUM PRINCIPLE; DIRICHLET PROBLEM; EIGENVALUES; GUIDE;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present some recent results on a class of degenerate operators which are modeled on the fractional Laplacian, converge to the truncated Laplacian, and are extremal among operators with fractional diffusion along subspaces of possibly different dimensions. In particular, we will recall basic properties of these operators, validity of maximum principles, and related phenomena.
引用
收藏
页码:95 / 115
页数:21
相关论文
共 50 条
  • [1] A family of nonlocal degenerate operators: maximum principles and related properties
    Schiera, Delia
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2024, 31 (01):
  • [2] Maximum principles and related problems for a class of nonlocal extremal operators
    Birindelli, Isabeau
    Galise, Giulio
    Schiera, Delia
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2022, 201 (05) : 2371 - 2412
  • [3] A family of nonlocal degenerate operators: maximum principles and related properties
    Delia Schiera
    Nonlinear Differential Equations and Applications NoDEA, 2024, 31
  • [4] Maximum principles and related problems for a class of nonlocal extremal operators
    Isabeau Birindelli
    Giulio Galise
    Delia Schiera
    Annali di Matematica Pura ed Applicata (1923 -), 2022, 201 : 2371 - 2412
  • [5] A family of degenerate elliptic operators: Maximum principle and its consequences
    Birindelli, Isabeau
    Galise, Giulio
    Ishii, Hitoshi
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2018, 35 (02): : 417 - 441
  • [6] THE EIGENVALUE PROBLEM FOR A CLASS OF DEGENERATE OPERATORS RELATED TO THE NORMALIZED p-LAPLACIAN
    Liu, Fang
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2022, 27 (05): : 2701 - 2720
  • [7] A Class of High Order Nonlocal Operators
    Tian, Xiaochuan
    Du, Qiang
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2016, 222 (03) : 1521 - 1553
  • [8] A Dirichlet problem for nonlocal degenerate elliptic operators with internal nonlinearity
    Yu, Hui
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 448 (01) : 326 - 346
  • [9] On overdetermined problems for a general class of nonlocal operators
    Biswas, Anup
    Jarohs, Sven
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 268 (05) : 2368 - 2393
  • [10] The obstacle problem for a class of degenerate fully nonlinear operators
    da Silva, Joao Vitor
    Vivas, Hernan
    REVISTA MATEMATICA IBEROAMERICANA, 2021, 37 (05) : 1991 - 2020