An End-to-End Blind Image Quality Assessment Method Using a Recurrent Network and Self-Attention

被引:30
作者
Zhou, Mingliang [1 ]
Lan, Xuting [1 ]
Wei, Xuekai [2 ,3 ]
Liao, Xingran [4 ]
Mao, Qin [5 ,6 ]
Li, Yutong [1 ]
Wu, Chao [1 ]
Xiang, Tao [1 ]
Fang, Bin [1 ]
机构
[1] Chongqing Univ, Sch Comp Sci, Chongqing 400044, Peoples R China
[2] Beijing Normal Univ, Sch Artificial Intelligence, Beijing 100875, Peoples R China
[3] Univ Macau, State Key Lab Internet Things Smart City, Macau, Peoples R China
[4] City Univ Hong Kong, Comp Sci Dept, Hong Kong, Peoples R China
[5] Coll Comp & Informat, Qiannan Normal Coll Nationalities, Duyun 558000, Peoples R China
[6] Qiannan Normal Coll Nationalities, Key Lab Complex Syst & Intelligent Optimizat Guizh, Duyun 558000, Peoples R China
基金
中国国家自然科学基金;
关键词
Blind image quality assessment; self-attention; recurrent neural network;
D O I
10.1109/TBC.2022.3215249
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we propose a blind image quality assessment (BIQA) method using self-attention and a recurrent neural network (RNN); this approach can effectively capture both local and global information from an input image. The implementation of our constructed deep no-reference (NR) assessment framework does not rely on any convolutional operations. First, the capture step for obtaining locally significant information is performed by a self-attention operation inside a divided window. Second, we design a serialized feature input memory subnetwork to fuse the global features of the image. Finally, all the integrated features are uniformly mapped to the target score. The experimental results obtained on publicly available benchmark IQA databases show that our approach outperforms other state-of-the-art algorithms.
引用
收藏
页码:369 / 377
页数:9
相关论文
共 62 条
  • [1] RV-TMO: Large-Scale Dataset for Subjective Quality Assessment of Tone Mapped Images
    Ak, Ali
    Goswami, Abhishek
    Hauser, Wolf
    Le Callet, Patrick
    Dufaux, Frederic
    [J]. IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 6013 - 6025
  • [2] Deep Neural Networks for No-Reference and Full-Reference Image Quality Assessment
    Bosse, Sebastian
    Maniry, Dominique
    Mueller, Klaus-Robert
    Wiegand, Thomas
    Samek, Wojciech
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2018, 27 (01) : 206 - 219
  • [3] Twitter Sentiment Analysis via Bi-sense Emoji Embedding and Attention-based LSTM
    Chen, Yuxiao
    Yuan, Jianbo
    You, Quanzeng
    Luo, Jiebo
    [J]. PROCEEDINGS OF THE 2018 ACM MULTIMEDIA CONFERENCE (MM'18), 2018, : 117 - 125
  • [4] Cho KYHY, 2014, Arxiv, DOI [arXiv:1406.1078, 10.48550/arXiv.1406.1078.]
  • [5] Hologram Domain Data Compression: Performance of Standard Codecs and Image Quality Assessment at Different Distances and Perspectives
    Corda, Roberto
    Perra, Cristian
    [J]. IEEE TRANSACTIONS ON BROADCASTING, 2020, 66 (02) : 292 - 309
  • [6] Cordonnier JB, 2020, Arxiv, DOI arXiv:1911.03584
  • [7] Dai ZH, 2019, Arxiv, DOI arXiv:1901.02860
  • [8] Deng J, 2009, PROC CVPR IEEE, P248, DOI 10.1109/CVPRW.2009.5206848
  • [9] Dosovitskiy A, 2021, Arxiv, DOI [arXiv:2010.11929, DOI 10.48550/ARXIV.2010.11929]
  • [10] The Pascal Visual Object Classes (VOC) Challenge
    Everingham, Mark
    Van Gool, Luc
    Williams, Christopher K. I.
    Winn, John
    Zisserman, Andrew
    [J]. INTERNATIONAL JOURNAL OF COMPUTER VISION, 2010, 88 (02) : 303 - 338