Penalized Estimation of Sparse Markov Regime-Switching Vector Auto-Regressive Models

被引:0
|
作者
Chavez-Martinez, Gilberto [1 ,4 ]
Agarwal, Ankush [2 ]
Khalili, Abbas [1 ]
Ahmed, Syed Ejaz [3 ]
机构
[1] McGill Univ, Dept Math & Stat, Montreal, PQ, Canada
[2] Univ Glasgow, Adam Smith Business Sch, Glasgow City, Scotland
[3] Brock Univ, Fac Math & Sci, St Catharines, ON, Canada
[4] McGill Univ, Dept Math & Stat, Montreal, PQ H3A 0B9, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
EM algorithm; Multivariate time series; Regularization methods; VARIABLE SELECTION; TIME-SERIES; LIKELIHOOD; SHRINKAGE;
D O I
10.1080/00401706.2023.2201336
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider sparse Markov regime-switching vector autoregressive (MSVAR) models in which the regimes are governed by a latent homogeneous Markov chain. In practice, even for moderate values of the number of Markovian regimes and data dimension, the associated MSVAR model has a large parameter dimension compared to a typical sample size. We provide a unified penalized conditional likelihood approach for estimating sparse MSVAR models. We show that our proposed estimators are consistent and recover the sparse structure of the model. We also show that, when the number of regimes is correctly or over-specified, our method provides consistent estimation of the predictive density. We develop an efficient implementation of the method based on a modified Expectation-Maximization (EM) algorithm. We discuss strategies for estimation of the number of regimes. We evaluate finite-sample performance of the method via simulations, and further demonstrate its utility by analyzing a real dataset.
引用
收藏
页码:553 / 563
页数:11
相关论文
共 50 条
  • [1] Penalized estimation of threshold auto-regressive models with many components and thresholds
    Zhang, Kunhui
    Safikhani, Abolfazl
    Tank, Alex
    Shojaie, Ali
    ELECTRONIC JOURNAL OF STATISTICS, 2022, 16 (01): : 1891 - 1951
  • [2] Estimation of state-space models with endogenous Markov regime-switching parameters
    Kang, Kyu H.
    ECONOMETRICS JOURNAL, 2014, 17 (01) : 56 - 82
  • [3] Efficient estimation of Markov regime-switching models: An application to electricity spot prices
    Janczura, Joanna
    Weron, Rafal
    ASTA-ADVANCES IN STATISTICAL ANALYSIS, 2012, 96 (03) : 385 - 407
  • [4] Multiclass vector auto-regressive models for multistore sales data
    Wilms, Ines
    Barbaglia, Luca
    Croux, Christophe
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 2018, 67 (02) : 435 - 452
  • [5] Markov switching integer-valued generalized auto-regressive conditional heteroscedastic models for dengue counts
    Chen, Cathy W. S.
    Khamthong, Khemmanant
    Lee, Sangyeol
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 2019, 68 (04) : 963 - 983
  • [6] Efficient estimation of Markov regime-switching models: An application to electricity spot prices
    Joanna Janczura
    Rafał Weron
    AStA Advances in Statistical Analysis, 2012, 96 : 385 - 407
  • [7] Hierarchical vector auto-regressive models and their applications to multi-subject effective connectivity
    Gorrostieta, Cristina
    Fiecas, Mark
    Ombao, Hernando
    Burke, Erin
    Cramer, Steven
    FRONTIERS IN COMPUTATIONAL NEUROSCIENCE, 2013, 7
  • [8] REGULARIZED ESTIMATION IN HIGH-DIMENSIONAL VECTOR AUTO-REGRESSIVE MODELS USING SPATIO-TEMPORAL INFORMATION
    Wang, Zhenzhong
    Safikhani, Abolfazl
    Zhu, Zhengyuan
    Matteson, David S.
    STATISTICA SINICA, 2023, 33 : 1271 - 1294
  • [9] Estimation of Auto-Regressive models for time series using Binary or Quantized Data
    Auber, R.
    Pouliquen, M.
    Pigeon, E.
    M'Saad, M.
    Gehan, O.
    Chapon, P. A.
    Moussay, S.
    IFAC PAPERSONLINE, 2018, 51 (15): : 581 - 586
  • [10] SPARSENESS, CONSISTENCY AND MODEL SELECTION FOR MARKOV REGIME-SWITCHING GAUSSIAN AUTOREGRESSIVE MODELS
    Khalili, Abbas
    Stephens, David A.
    STATISTICA SINICA, 2021, 31 (04) : 1891 - 1914