Global Topological Synchronization on Simplicial and Cell Complexes

被引:37
作者
Carletti, Timoteo [1 ,2 ]
Giambagli, Lorenzo [1 ,2 ,3 ,4 ]
Bianconi, Ginestra [5 ,6 ]
机构
[1] Univ Namur, Namur Inst Complex Syst, Dept Math, Rue Grafe 2, Namur, Belgium
[2] Univ Namur, Namur Inst Complex Syst, naXys, Rue Grafe 2, Namur, Belgium
[3] Univ Florence, Dept Phys & Astron, INFN, I-50019 Sesto Fiorentino, Italy
[4] CSDC, I-50019 Sesto Fiorentino, Italy
[5] Queen Mary Univ London, Sch Math Sci, London E1 4NS, England
[6] Alan Turing Inst, 96 Euston Rd, London NW1 2DB, England
关键词
Complex networks - Topology - Underwater acoustics;
D O I
10.1103/PhysRevLett.130.187401
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Topological signals, i.e., dynamical variables defined on nodes, links, triangles, etc. of higher-order networks, are attracting increasing attention. However, the investigation of their collective phenomena is only at its infancy. Here we combine topology and nonlinear dynamics to determine the conditions for global synchronization of topological signals defined on simplicial or cell complexes. On simplicial complexes we show that topological obstruction impedes odd dimensional signals to globally synchronize. On the other hand, we show that cell complexes can overcome topological obstruction and in some structures signals of any dimension can achieve global synchronization.
引用
收藏
页数:6
相关论文
共 49 条
[1]  
[Anonymous], 1991, J. Nonlinear Sci, DOI DOI 10.1007/BF02429847
[2]  
[Anonymous], 2010, Discrete calculus: Applied analysis on graphs for computational science
[3]  
[Anonymous], US, DOI [10.1103/PhysRevLett.130.187401, DOI 10.1103/PHYSREVLETT.130.187401]
[4]   The world of the complex Ginzburg-Landau equation [J].
Aranson, IS ;
Kramer, L .
REVIEWS OF MODERN PHYSICS, 2002, 74 (01) :99-143
[5]   Synchronization in complex networks [J].
Arenas, Alex ;
Diaz-Guilera, Albert ;
Kurths, Jurgen ;
Moreno, Yamir ;
Zhou, Changsong .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2008, 469 (03) :93-153
[6]   Connecting Hodge and Sakaguchi-Kuramoto through a mathematical framework for coupled oscillators on simplicial complexes [J].
Arnaudon, Alexis ;
Peach, Robert L. ;
Petri, Giovanni ;
Expert, Paul .
COMMUNICATIONS PHYSICS, 2022, 5 (01)
[7]   The physics of higher-order interactions in complex systems [J].
Battiston, Federico ;
Amico, Enrico ;
Barrat, Alain ;
Bianconi, Ginestra ;
Ferraz de Arruda, Guilherme ;
Franceschiello, Benedetta ;
Iacopini, Iacopo ;
Kefi, Sonia ;
Latora, Vito ;
Moreno, Yamir ;
Murray, Micah M. ;
Peixoto, Tiago P. ;
Vaccarino, Francesco ;
Petri, Giovanni .
NATURE PHYSICS, 2021, 17 (10) :1093-1098
[8]   Networks beyond pairwise interactions: Structure and dynamics [J].
Battiston, Federico ;
Cencetti, Giulia ;
Iacopini, Iacopo ;
Latora, Vito ;
Lucas, Maxime ;
Patania, Alice ;
Young, Jean-Gabriel ;
Petri, Giovanni .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2020, 874 :1-92
[9]  
Bianconi G., 2021, Higher-order networks
[10]   The topological Dirac equation of networks and simplicial complexes [J].
Bianconi, Ginestra .
JOURNAL OF PHYSICS-COMPLEXITY, 2021, 2 (03)