The Heisenberg double of the quantum Euclidean group and its representations

被引:3
作者
Tao, Wen-Qing [1 ]
机构
[1] Yangzhou Univ, Sch Math Sci, Yangzhou 225002, Peoples R China
基金
中国国家自然科学基金;
关键词
Heisenberg double; quantum Euclidean group; automorphism group; prime ideal; weight module; AUTOMORPHISMS; MOTIONS; PLANE;
D O I
10.1007/s11425-021-2043-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Heisenberg double D-q(E-2) of the quantum Euclidean group O-q(E2) is the smash product of O-q(E-2) with its Hopf dual U-q(e(2)). For the algebra D-q(E-2), explicit descriptions of its prime, primitive and maximal spectra are obtained. All the prime factors of D-q(E-2) are presented as generalized Weyl algebras. As a result, we obtain that the algebra D-q(E2) has no finite-dimensional representations, and D-q(E-2) cannot have a Hopf algebra structure. The automorphism groups of the quantum Euclidean group and its Heisenberg double are determined. Some centralizers are explicitly described via generators and defining relations. This enables us to give a classification of simple weight modules and the so-called a-weight modules over the algebra D-q(E-2).
引用
收藏
页码:1713 / 1736
页数:24
相关论文
共 26 条
[1]   The quantum group SLq☆(2) and quantum algebra Uq(sl2☆) based on a new associative multiplication on 2 x 2 matrices [J].
Aziziheris, K. ;
Fakhri, H. ;
Laheghi, S. .
JOURNAL OF MATHEMATICAL PHYSICS, 2020, 61 (06)
[2]   The simple modules of certain generalized crossed products [J].
Bavula, V ;
vanOystaeyen, F .
JOURNAL OF ALGEBRA, 1997, 194 (02) :521-566
[3]   Generalized Weyl algebras and diskew polynomial rings [J].
Bavula, V. V. .
JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2020, 19 (10)
[4]  
Bavula V. V., 1992, Ukrainian Math. J., V44, P1500
[5]  
Bavula V. V., 1993, St. Petersburg Math. J, V4, P71
[6]   Integral calculus on Eq(2) [J].
Brzezinski, Tomasz .
SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2010, 6
[7]   3-DIMENSIONAL QUANTUM GROUPS FROM CONTRACTIONS OF SU(2)Q [J].
CELEGHINI, E ;
GIACHETTI, R ;
SORACE, E ;
TARLINI, M .
JOURNAL OF MATHEMATICAL PHYSICS, 1990, 31 (11) :2548-2551
[8]  
Chari V., 1995, A guide to quantum groups
[9]  
Dixmier J., 1963, ACAD BRASIL CIENTAS, V35, P491
[10]  
Goodearl K.R., 1998, Trends in ring theory (Miskolc, 1996), V22, P39