Quantum-corrected scattering of a Schwarzschild black hole with GUP effect

被引:10
作者
Heidari, N. [1 ]
Hassanabadi, H. [1 ]
Chen, H. [2 ]
机构
[1] Shahrood Univ Technol, Fac Phys, Shahrood, Iran
[2] Zunyi Normal Univ, Sch Phys & Elect Sci, Zunyi 563006, Peoples R China
关键词
Phase shift; Generalized uncertainty principle; Black hole; Quasinormal mode; P?sch-Teller; QUASI-NORMAL MODES; OSCILLATIONS;
D O I
10.1016/j.physletb.2023.137707
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In this research, we find the quantum correction of the Schwarzschild black hole metric based on the generalized uncertainty principle (GUP). We assume a massless field scalar field, with an effective potential according to the GUP effect. After obtaining the effective potential numerically, we apply approximation on the effective potential to find the phase shift of the scattered wave function. Moreover, the GUP corrected reflection and transmission coefficient of scattered radial wave function are calculated with the Posch-Teller method.(c) 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons .org /licenses /by /4 .0/). Funded by SCOAP3.
引用
收藏
页数:6
相关论文
共 48 条
[1]   Observation of Gravitational Waves from a Binary Black Hole Merger [J].
Abbott, B. P. ;
Abbott, R. ;
Abbott, T. D. ;
Abernathy, M. R. ;
Acernese, F. ;
Ackley, K. ;
Adams, C. ;
Adams, T. ;
Addesso, P. ;
Adhikari, R. X. ;
Adya, V. B. ;
Affeldt, C. ;
Agathos, M. ;
Agatsuma, K. ;
Aggarwal, N. ;
Aguiar, O. D. ;
Aiello, L. ;
Ain, A. ;
Ajith, P. ;
Allen, B. ;
Allocca, A. ;
Altin, P. A. ;
Anderson, S. B. ;
Anderson, W. G. ;
Arai, K. ;
Arain, M. A. ;
Araya, M. C. ;
Arceneaux, C. C. ;
Areeda, J. S. ;
Arnaud, N. ;
Arun, K. G. ;
Ascenzi, S. ;
Ashton, G. ;
Ast, M. ;
Aston, S. M. ;
Astone, P. ;
Aufmuth, P. ;
Aulbert, C. ;
Babak, S. ;
Bacon, P. ;
Bader, M. K. M. ;
Baker, P. T. ;
Baldaccini, F. ;
Ballardin, G. ;
Ballmer, S. W. ;
Barayoga, J. C. ;
Barclay, S. E. ;
Barish, B. C. ;
Barker, D. ;
Barone, F. .
PHYSICAL REVIEW LETTERS, 2016, 116 (06)
[2]   Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA [J].
Abbott, B. P. ;
Abbott, R. ;
Abbott, T. D. ;
Abraham, S. ;
Acernese, F. ;
Ackley, K. ;
Adams, C. ;
Adya, V. B. ;
Affeldt, C. ;
Agathos, M. ;
Agatsuma, K. ;
Aggarwal, N. ;
Aguiar, O. D. ;
Aiello, L. ;
Ain, A. ;
Ajith, P. ;
Akutsu, T. ;
Allen, G. ;
Allocca, A. ;
Aloy, M. A. ;
Altin, P. A. ;
Amato, A. ;
Ananyeva, A. ;
Anderson, S. B. ;
Anderson, W. G. ;
Ando, M. ;
Angelova, S. V. ;
Antier, S. ;
Appert, S. ;
Arai, K. ;
Arai, Koya ;
Arai, Y. ;
Araki, S. ;
Araya, A. ;
Araya, M. C. ;
Areeda, J. S. ;
Arene, M. ;
Aritomi, N. ;
Arnaud, N. ;
Arun, K. G. ;
Ascenzi, S. ;
Ashton, G. ;
Aso, Y. ;
Aston, S. M. ;
Astone, P. ;
Aubin, F. ;
Aufmuth, P. ;
AultONeal, K. ;
Austin, C. ;
Avendano, V. .
LIVING REVIEWS IN RELATIVITY, 2020, 23 (01)
[3]   Proposal for testing quantum gravity in the lab [J].
Ali, Ahmed Farag ;
Das, Saurya ;
Vagenas, Elias C. .
PHYSICAL REVIEW D, 2011, 84 (04)
[4]   The generalized uncertainty principle effect in acoustic black holes [J].
Anacleto, M. A. ;
Brito, F. A. ;
Luna, G. C. ;
Passos, E. .
ANNALS OF PHYSICS, 2022, 440
[5]   Quasinormal modes and shadow of a Schwarzschild black hole with GUP [J].
Anacleto, M. A. ;
Campos, J. A., V ;
Brito, F. A. ;
Passos, E. .
ANNALS OF PHYSICS, 2021, 434
[6]  
Ansoldi Stefano, 2008, arXiv
[7]   Gravitational-wave extraction from an inspiraling configuration of merging black holes [J].
Baker, JG ;
Centrella, J ;
Choi, DI ;
Koppitz, M ;
van Meter, J .
PHYSICAL REVIEW LETTERS, 2006, 96 (11)
[8]  
Bardeen J.M., 1968, P INT C GR5 TBIL USS, V174, P174
[9]  
Berestetskii V.B., 1982, Course of Theoretical Physics, V4
[10]   Gravitational-wave spectroscopy of massive black holes with the space interferometer LISA [J].
Berti, E ;
Cardoso, V ;
Will, CM .
PHYSICAL REVIEW D, 2006, 73 (06)