Intelligent Fault Prognosis Method Based on Stacked Autoencoder and Continuous Deep Belief Network

被引:5
|
作者
Zhang, Chao [1 ]
Zhang, Yibin [2 ]
Huang, Qixuan [1 ]
Zhou, Yong [1 ]
机构
[1] Northwestern Polytech Univ, Sch Aeronaut, Dept Integrated Technol & Control Engn, Xian 710072, Peoples R China
[2] Aeronaut Radio Elect Res Inst, Shanghai 200233, Peoples R China
关键词
continuous deep belief network; fault prognosis; rolling bearings; stacked autoencoder; MACHINE; ALGORITHM; DIAGNOSIS;
D O I
10.3390/act12030117
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Mechanical fault prediction is one of the main problems in condition-based maintenance, and its purpose is to predict the future working status of the machine based on the collected status information of the machine. However, on one hand, the model health indices based on the information collected by the sensors will directly affect the evaluation results of the system. On the other hand, because the model health index is a continuous time series, the effect of feature learning on continuous data also affects the results of fault prognosis. This paper makes full use of the autonomous information fusion capability of the stacked autoencoder and the strong feature learning capability of continuous deep belief networks for continuous data, and proposes a novel fault prognosis method. Firstly, a stacked autoencoder is used to construct the model health index through the feature learning and information fusion of the vibration signals collected by the sensors. To solve the local fluctuations in the health indices, the exponentially weighted moving average method is used to smooth the index data to reduce the impact of noise. Then, a continuous deep belief network is used to perform feature learning on the constructed health index to predict future performance changes in the model. Finally, a fault prognosis experiment based on bearing data was performed. The experimental results show that the method combines the advantages of stacked autoencoders and continuous deep belief networks, and has a lower prediction error than traditional intelligent fault prognosis methods.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] Intelligent fault diagnosis method of rolling bearing based on stacked denoising autoencoder and convolutional neural network
    Che Changchang
    Wang Huawei
    Ni Xiaomei
    Fu Qiang
    INDUSTRIAL LUBRICATION AND TRIBOLOGY, 2020, 72 (07) : 947 - 953
  • [2] Semisupervised fault diagnosis of aeroengine based on denoising autoencoder and deep belief network
    Lv, Defeng
    Wang, Huawei
    Che, Changchang
    AIRCRAFT ENGINEERING AND AEROSPACE TECHNOLOGY, 2022, 94 (10): : 1772 - 1779
  • [3] A Stacked Autoencoder-Based Deep Neural Network for Achieving Gearbox Fault Diagnosis
    Liu, Guifang
    Bao, Huaiqian
    Han, Baokun
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2018, 2018
  • [4] Stacked Sparse Autoencoder-Based Deep Network for Fault Diagnosis of Rotating Machinery
    Qi, Yumei
    Shen, Changqing
    Wang, Dong
    Shi, Juanjuan
    Jiang, Xingxing
    Zhu, Zhongkui
    IEEE ACCESS, 2017, 5 : 15066 - 15079
  • [5] Cable Incipient Fault Identification with a Sparse Autoencoder and a Deep Belief Network
    Liu, Ning
    Fan, Bo
    Xiao, Xianyong
    Yang, Xiaomei
    ENERGIES, 2019, 12 (18)
  • [6] A cable fault recognition method based on a deep belief network
    Qin Xuebin
    Zhang Yizhe
    Mei Wang
    Dong Gang
    Gao Jun
    Wang Pai
    Deng Jun
    Pan Hongguang
    COMPUTERS & ELECTRICAL ENGINEERING, 2018, 71 : 452 - 464
  • [7] Deep Dictionary Learning vs Deep Belief Network vs Stacked Autoencoder: An Empirical Analysis
    Singhal, Vanika
    Gogna, Anupriya
    Majumdar, Angshul
    NEURAL INFORMATION PROCESSING, ICONIP 2016, PT IV, 2016, 9950 : 337 - 344
  • [8] A Novel Intelligent Fault Diagnosis Method Based on Variational Mode Decomposition and Ensemble Deep Belief Network
    Zhang, Chao
    Zhang, Yibin
    Hu, Chenxi
    Liu, Zhenbao
    Cheng, Liye
    Zhou, Yong
    IEEE ACCESS, 2020, 8 : 36293 - 36312
  • [9] A novel intelligent fault diagnosis method based on variational mode decomposition and ensemble deep belief network
    Zhang, Chao
    Zhang, Yibin
    Hu, Chenxi
    Liu, Zhenbao
    Cheng, Liye
    Zhou, Yong
    IEEE Access, 2020, 8 : 36293 - 36312
  • [10] Fault Diagnosis Method of Satellite Attitude Control System Based on Stacked Autoencoder Network
    Li, Lei
    Li, Chunyue
    Tong, Xinying
    Zhang, Xinyu
    SEVENTH SYMPOSIUM ON NOVEL PHOTOELECTRONIC DETECTION TECHNOLOGY AND APPLICATIONS, 2021, 11763