Dynamic rhenium dopant boosts ruthenium oxide for durable oxygen evolution

被引:274
作者
Jin, Huanyu [1 ,2 ]
Liu, Xinyan [3 ]
An, Pengfei [4 ]
Tang, Cheng [1 ]
Yu, Huimin [5 ]
Zhang, Qinghua [6 ]
Peng, Hong-Jie [3 ]
Gu, Lin [6 ]
Zheng, Yao [1 ]
Song, Taeseup [7 ]
Davey, Kenneth [1 ]
Paik, Ungyu [7 ]
Dong, Juncai [4 ]
Qiao, Shi-Zhang [1 ]
机构
[1] Univ Adelaide, Sch Chem Engn & Adv Mat, Adelaide, SA 5005, Australia
[2] Univ Adelaide, Inst Sustainabil Energy & Resources, Adelaide, SA 5005, Australia
[3] Univ Elect Sci & Technol China, Inst Fundamental & Frontier Sci, Chengdu 611731, Sichuan, Peoples R China
[4] Chinese Acad Sci, Inst High Energy Phys, Beijing Synchrotron Radiat Facil, Beijing 100049, Peoples R China
[5] Univ South Australia, Future Ind Inst, Mawson Lakes Campus, Adelaide, SA 5095, Australia
[6] Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China
[7] Hanyang Univ, Dept Energy Engn, Seoul 04763, South Korea
基金
澳大利亚研究理事会; 中国国家自然科学基金;
关键词
TOTAL-ENERGY CALCULATIONS; RU; STABILITY; DISSOLUTION; IROX; NANOPARTICLES; REDUCTION; METALS; ORIGIN; REDOX;
D O I
10.1038/s41467-023-35913-6
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Heteroatom-doping is a practical means to boost RuO2 for acidic oxygen evolution reaction (OER). However, a major drawback is conventional dopants have static electron redistribution. Here, we report that Re dopants in Re0.06Ru0.94O2 undergo a dynamic electron accepting-donating that adaptively boosts activity and stability, which is different from conventional dopants with static dopant electron redistribution. We show Re dopants during OER, (1) accept electrons at the on-site potential to activate Ru site, and (2) donate electrons back at large overpotential and prevent Ru dissolution. We confirm via in situ characterizations and first-principle computation that the dynamic electron-interaction between Re and Ru facilitates the adsorbate evolution mechanism and lowers adsorption energies for oxygen intermediates to boost activity and stability of Re0.06Ru0.94O2. We demonstrate a high mass activity of 500 A g(cata.)(-1) (7811 A g(Re-Ru)(-1)) and a high stability number of S-number = 4.0 x 10(6) n(oxygen) n(Ru)(-1) to outperform most electrocatalysts. We conclude that dynamic dopants can be used to boost activity and stability of active sites and therefore guide the design of adaptive electrocatalysts for clean energy conversions. RuO2 is a promising anode catalyst for proton exchange membrane water electrolyzers but suffers from poor catalytic stability. Here the authors present a rhenium-doped RuO2 with a unique dynamic electron accepting-donating that adaptively boosts activity and stability in acidic water oxidation.
引用
收藏
页数:11
相关论文
共 63 条
[1]   Quantification of Active Site Density and Turnover Frequency: From Single-Atom Metal to Nanoparticle Electrocatalysts [J].
Bae, Geunsu ;
Kim, Haesol ;
Choi, Hansol ;
Jeong, Pyeonghwa ;
Kim, Dong Hyun ;
Kwon, Han Chang ;
Lee, Kug-Seung ;
Choi, Minkee ;
Oh, Hyung-Suk ;
Jaouen, Frederic ;
Choi, Chang Hyuck .
JACS AU, 2021, 1 (05) :586-597
[2]   A mechanical, high surface area and solvent-free 'powder-to-electrode' fabrication method for screening OER catalysts [J].
Browne, M. P. ;
O'Rourke, C. ;
Mills, A. .
ELECTROCHEMISTRY COMMUNICATIONS, 2017, 85 :1-5
[3]   Determining the importance of the electrode support and fabrication method during the initial screening process of an active catalyst for the oxygen evolution reaction [J].
Browne, Michelle P. ;
Mills, Andrew .
JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (29) :14162-14169
[4]   OER Performances of Cationic Substituted (100)-Oriented IrO2 Thin Films: A Joint Experimental and Theoretical Study [J].
Buvat, Gaetan ;
Eslamibidgoli, Mohammad J. ;
Garbarino, Sebastien ;
Eikerling, Michael ;
Guay, Daniel .
ACS APPLIED ENERGY MATERIALS, 2020, 3 (06) :5229-5237
[5]   Mn-Doped RuO2 Nanocrystals as Highly Active Electrocatalysts for Enhanced Oxygen Evolution in Acidic Media [J].
Chen, Shi ;
Huang, Hao ;
Jiang, Peng ;
Yang, Kang ;
Diao, Jiefeng ;
Gong, Shipeng ;
Liu, Shuai ;
Huang, Minxue ;
Wang, Hui ;
Chen, Qianwang .
ACS CATALYSIS, 2020, 10 (02) :1152-+
[6]   Dissolution of Noble Metals during Oxygen Evolution in Acidic Media [J].
Cherevko, Serhiy ;
Zeradjanin, Aleksandar R. ;
Topalov, Angel A. ;
Kulyk, Nadiia ;
Katsounaros, Ioannis ;
Mayrhofer, Karl J. J. .
CHEMCATCHEM, 2014, 6 (08) :2219-2223
[7]   Iridium metallene oxide for acidic oxygen evolution catalysis [J].
Dang, Qian ;
Lin, Haiping ;
Fan, Zhenglong ;
Ma, Lu ;
Shao, Qi ;
Ji, Yujin ;
Zheng, Fangfang ;
Geng, Shize ;
Yang, Shi-Ze ;
Kong, Ningning ;
Zhu, Wenxiang ;
Li, Youyong ;
Liao, Fan ;
Huang, Xiaoqing ;
Shao, Mingwang .
NATURE COMMUNICATIONS, 2021, 12 (01)
[8]   Phase- and Surface Composition-Dependent Electrochemical Stability of Ir-Ru Nanoparticles during Oxygen Evolution Reaction [J].
Escalera-Lopez, Daniel ;
Czioska, Steffen ;
Geppert, Janis ;
Boubnov, Alexey ;
Roese, Philipp ;
Saraci, Erisa ;
Krewer, Ulrike ;
Grunwaldt, Jan-Dierk ;
Cherevko, Serhiy .
ACS CATALYSIS, 2021, 11 (15) :9300-9316
[9]   Importance of Surface IrOx in Stabilizing RuO2 for Oxygen Evolution [J].
Escudero-Escribano, Maria ;
Pedersen, Anders F. ;
Paoli, Elisa A. ;
Frydendal, Rasmus ;
Friebel, Daniel ;
Malacrida, Paolo ;
Rossmeisl, Jan ;
Stephens, Ifan E. L. ;
Chorkendorff, Ib .
JOURNAL OF PHYSICAL CHEMISTRY B, 2018, 122 (02) :947-955
[10]   Oxygen K-edge X-ray Absorption Spectra [J].
Frati, Federica ;
Hunault, Myrtille O. J. Y. ;
de Groot, Frank M. F. .
CHEMICAL REVIEWS, 2020, 120 (09) :4056-4110