Gaussian entanglement witness and refined Werner-Wolf criterion for continuous variables

被引:5
作者
Chen, Xiao-yu [1 ]
Miao, Maoke [1 ]
Yin, Rui [1 ]
Yuan, Jiantao [1 ]
机构
[1] Zhejiang Univ City Coll, Sch Informat & Elect Engn, Hangzhou 310015, Peoples R China
基金
中国国家自然科学基金;
关键词
SEPARABILITY CRITERION;
D O I
10.1103/PhysRevA.107.022410
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We use matched quantum entanglement witnesses to study the separable criteria of continuous variable states. The witness can be written as an identity operator minus a Gaussian operator. The optimization of the witness then is transformed to an eigenvalue problem of a Gaussian kernel integral equation. It follows a separable criterion not only for symmetric Gaussian quantum states, but also for non-Gaussian states prepared by photon adding to and/or subtracting from symmetric Gaussian states. Based on Fock space numeric calculation, we obtain an entanglement witness for more general two-mode states. A necessary criterion of separability follows for two-mode states and it is shown to be necessary and sufficient for a two-mode squeezed thermal state and the related two-mode non-Gaussian states. We also connect the witness-based criterion with Werner-Wolf criterion and refine the Werner-Wolf criterion.
引用
收藏
页数:13
相关论文
共 29 条
[11]   Quantum entanglement [J].
Horodecki, Ryszard ;
Horodecki, Pawel ;
Horodecki, Michal ;
Horodecki, Karol .
REVIEWS OF MODERN PHYSICS, 2009, 81 (02) :865-942
[12]   Continuous-variable quantum key distribution with non-Gaussian operations [J].
Hu, Liyun ;
Al-amri, M. ;
Liao, Zeyang ;
Zubairy, M. S. .
PHYSICAL REVIEW A, 2020, 102 (01)
[13]   Optimal entanglement witnesses for continuous-variable systems [J].
Hyllus, P ;
Eisert, J .
NEW JOURNAL OF PHYSICS, 2006, 8
[14]   Entanglement criterion of computable cross norm and realignment for continuous-variable bipartite symmetric states [J].
Jiang, Li-zhen ;
Chen, Xiao-yu ;
Yu, Ping ;
Tian, Mingzhen .
PHYSICAL REVIEW A, 2014, 89 (01)
[15]   Quantum Metrology with Entangled Coherent States [J].
Joo, Jaewoo ;
Munro, William J. ;
Spiller, Timothy P. .
PHYSICAL REVIEW LETTERS, 2011, 107 (08)
[16]  
Liu D., 2021, CELL PROLIFERAT, V16
[17]   Uncertainty inequalities as entanglement criteria for negative partial-transpose states [J].
Nha, Hyunchul ;
Zubairy, M. Suhail .
PHYSICAL REVIEW LETTERS, 2008, 101 (13)
[18]   No-Go Theorem for Gaussian Quantum Error Correction [J].
Niset, Julien ;
Fiurasek, Jaromir ;
Cerf, Nicolas J. .
PHYSICAL REVIEW LETTERS, 2009, 102 (12)
[19]   Separability criterion for density matrices [J].
Peres, A .
PHYSICAL REVIEW LETTERS, 1996, 77 (08) :1413-1415
[20]   Inseparability criteria for continuous bipartite quantum states [J].
Shchukin, E ;
Vogel, W .
PHYSICAL REVIEW LETTERS, 2005, 95 (23)