Ultra-strong heavy-drawn eutectic high entropy alloy wire

被引:48
|
作者
Chen, Jin-Xi [1 ,2 ]
Li, Tong [1 ,2 ]
Chen, Yan [1 ,2 ]
Cao, Fu-Hua [1 ,2 ]
Wang, Hai-Ying [1 ,2 ]
Dai, Lan-Hong [1 ,2 ,3 ]
机构
[1] Chinese Acad Sci, Inst Mech, State Key Lab Nonlinear Mech, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Sch Engn Sci, Beijing 101408, Peoples R China
[3] Univ Chinese Acad Sci, Sch Future Technol, Beijing 100049, Peoples R China
关键词
Eutectic high entropy alloy wire; Mechanical properties; Gradient heterogeneous lamella structure; Cross-slip; HIGH-DUCTILITY; HIGH-STRENGTH; MECHANICAL-PROPERTIES; CRYOGENIC STRENGTH; TENSILE PROPERTIES; BEHAVIOR; STEEL; DISLOCATION; PLASTICITY; MICROSTRUCTURE;
D O I
10.1016/j.actamat.2022.118515
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Metallic wires with high strength-ductility at both room and cryogenic temperatures are always pur-sued for engineering applications. However, traditional metallic wires are tortured inevitably by strength -ductility trade-off dilemma. In this work, a gradient heterogeneous lamella structure, characterized with hard gradient-distributed B2 lamellae embedded in soft FCC lamellae matrix, is introduced into AlCoCrFeNi2.1 eutectic high entropy alloy (EHEA) wire by well-designed multiple-stage heavy-drawn and heat treatment processes, which achieves an outstanding strength-ductility synergy. This EHEA wire ex-hibits not only high tensile strength of 1.85 GPa and sufficient uniform elongation of-12% at room tem-perature, but also ultra-high tensile strength of 2.52 GPa and even slightly elevated uniform elongation of-14% at cryogenic temperature. In-depth microstructure characterization indicates that the gradient heterogeneous lamella structure facilitates a radial gradient distribution of geometrically necessary dis-location (GND) during tension, i.e., the GND density decreases gradually from the surface region to the central region of EHEA wire, which induces pronounced strain gradient strengthening effect and thus greatly benefits the mechanical properties. Intriguingly, at cryogenic temperature, dense cross-slip which gives rise to intensively dynamic microstructure refinement is firstly observed in the B2 phase of EHEA wire. The activation of cross-slip provides sufficient ductility while inducing evidently dynamic Hall-Petch effect, becoming the most effective deformation mechanism contributing to the unprecedented cryogenic tension properties. This work sheds light on designing ultra-strong EHEA wire and other advanced metal-lic wires.(c) 2022 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Compositionally graded high entropy alloy with a strong front and ductile back
    Gwalani, Bharat
    Gangireddy, Sindhura
    Shukla, Shivakant
    Yannetta, Christopher J.
    Valentin, Sheena Grace
    Mishra, Rajiv S.
    Banerjee, Rajarshi
    MATERIALS TODAY COMMUNICATIONS, 2019, 20
  • [22] Hierarchical nano-martensite-engineered a low-cost ultra-strong and ductile titanium alloy
    Zhang, Chongle
    Bao, Xiangyun
    Hao, Mengyuan
    Chen, Wei
    Zhang, Dongdong
    Wang, Dong
    Zhang, Jinyu
    Liu, Gang
    Sun, Jun
    NATURE COMMUNICATIONS, 2022, 13 (01)
  • [23] Unusually increased plasticity of additively manufactured ultra-strong CoCrNi medium entropy alloy composite with increasing temperature
    Ma, Jun
    Zhang, Xuezhe
    Zhang, Zhi-jia
    Zhang, Qian-cheng
    Wang, Jian
    Jin, Feng
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2025, 925
  • [24] Effect of heat treatment on AlCoCrFeNi2.1 eutectic high-entropy alloy after electron beam remelting
    Wang, Wenqin
    Zhu, Xun
    Wang, De
    Li, Yulong
    Zhang, Shiqi
    Wang, Ting
    Zhang, Chaohua
    Chen, Jie
    Li, Shen
    INTERMETALLICS, 2024, 171
  • [25] Nanostructuring as a route to achieve ultra-strong high- and medium-entropy alloys with high creep resistance
    Sun, Shuo
    Gao, Peng
    Sun, Guixun
    Cai, Zeyu
    Hu, Jiangjiang
    Han, Shuang
    Lian, Jianshe
    Liao, Xiaozhou
    JOURNAL OF ALLOYS AND COMPOUNDS, 2020, 830
  • [26] A novel high performance eutectic medium-entropy alloy with nanoprecipitates
    Xiao, Yake
    Peng, Xianghe
    Fu, Tao
    VACUUM, 2022, 200
  • [27] Stabilized sub-grain and nano carbides-driven 1.2GPa grade ultra-strong CrMnFeCoNi high-entropy alloy additively manufactured by laser powder bed fusion
    Kim, Young-Kyun
    Lee, Kee-Ahn
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2022, 117 : 8 - 22
  • [28] Ultra-strong nano-structured high-entropy AlCoCrFeNi alloy films reinforced by Al2O3 addition
    Zhang, Fanyong
    Zhang, Hanlong
    Ma, Honglu
    Wang, Liangquan
    He, Senlong
    Jin, Hongshu
    Yin, Fuxing
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2024, 33 : 1809 - 1821
  • [29] Evolution of microstructure and mechanical properties during annealing of heavily rolled AlCoCrFeNi2.1 eutectic high-entropy alloy
    Lozinko, Adrianna
    Gholizadeh, Reza
    Zhang, Yubin
    Klement, Uta
    Tsuji, Nobuhiro
    Mishin, Oleg, V
    Guo, Sheng
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2022, 833
  • [30] High-strength and high-ductility AlCoCrFeNi2.1 eutectic high-entropy alloy achieved via precipitation strengthening in a heterogeneous structure
    Xiong, Ting
    Zheng, Shijian
    Pang, Jingyu
    Ma, Xiuliang
    SCRIPTA MATERIALIA, 2020, 186 : 336 - 340