An R2R3-MYB FtMYB11 from Tartary buckwheat has contrasting effects on abiotic tolerance in Arabidopsis

被引:4
|
作者
Chen, Qian [1 ]
Peng, Lu [1 ]
Wang, Anhu [2 ]
Yu, Lingzhi [1 ]
Liu, Yu [1 ]
Zhang, Xinrong [1 ]
Wang, Ruolin [1 ]
Li, Xiaoyi [1 ]
Yang, Yi [1 ]
Li, Xufeng [1 ]
Wang, Jianmei [1 ]
机构
[1] Sichuan Univ, Coll Life Sci, Key Lab Bioresources & Ecoenvironm, Minist Educ, Chengdu 610065, Peoples R China
[2] Xichang Univ, Xichang 615013, Sichuan, Peoples R China
关键词
Fagopyrum tataricum; Tartary buckwheat; FtMYB11; Abiotic stress; TRANSCRIPTION FACTOR GENE; FLAVONOID BIOSYNTHESIS; OSMOTIC-STRESS; MYB; ACCUMULATION; REGULATOR; DROUGHT; SALT/DROUGHT; ENCODES; SALT;
D O I
10.1016/j.jplph.2022.153842
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
R2R3-MYB transcription factors play important roles in response to abiotic stresses in planta, such as salt, drought, and osmotic stress. However, the role of FtMYB11 in Tartary buckwheat (Fagopyrum tataricum) in drought and osmotic tolerance has not yet been elucidated. In this study, we found that FtMYB11 was markedly induced by exogenous abscisic acid (ABA), salinity, and mannitol. Further, FtMYB11-overexpressing Arabidopsis showed hypersensitivity to ABA-mediated seed germination and seedling establishment through regulating transcripts of AtCBF1, AtDREB2A, and AtRD20, compared with wild type, indicating that FtMYB11 plays a positive role in ABA signaling. In contrast, transgenic lines overexpressing FtMYB11 were sensitive to mannitol and NaCl treatments, suggesting that FtMYB11 plays a negative role in osmotic tolerance. Intriguingly, the transcripts of ABA biosynthetic enzyme genes were significantly elevated in plants overexpressing FtMYB11 after exposure to osmotic stresses, such as AtABA3 and AtNCED3. In addition, flavonoid biosynthesis genes were also upregulated in transgenic Arabidopsis under ABA, salt, and drought treatments, including AtC4H, AtF3H, AtANS, AtFLS, and At4CL. The drought tolerance assay showed that plants overexpressing FtMYB11 displayed greater tolerance to water deficit through regulating MDA and proline content. Taken together, FtMYB11 has opposite roles in response to abiotic stresses, but it may mediate flavonoid biosynthesis through regulation of related enzyme genes.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Characterisation of PtMYB1, an R2R3-MYB from pine xylem
    Astrid Patzlaff
    Lisa J. Newman
    Christian Dubos
    Ross W. Whetten
    Caroline Smith
    Stephanie McInnis
    Michael W. Bevan
    Ronald R. Sederoff
    Malcolm M. Campbell
    Plant Molecular Biology, 2003, 53 : 597 - 608
  • [42] GmMYB181, a Soybean R2R3-MYB Protein, Increases Branch Number in Transgenic Arabidopsis
    Yang, Hui
    Xue, Qian
    Zhang, Zhenzhen
    Du, Jingyi
    Yu, Deyue
    Huang, Fang
    FRONTIERS IN PLANT SCIENCE, 2018, 9
  • [43] Characterisation of PtMYB1, an R2R3-MYB from pine xylem
    Patzlaff, A
    Newman, LJ
    Dubos, C
    Whetten, R
    Smith, C
    McInnis, S
    Bevan, MW
    Sederoff, RR
    Campbell, MM
    PLANT MOLECULAR BIOLOGY, 2003, 53 (04) : 597 - 608
  • [44] AtMYB61, an R2R3-MYB transcription factor controlling stomatal aperture in Arabidopsis thaliana
    Liang, YK
    Dubos, C
    Dodd, IC
    Holroyd, GH
    Hetherington, AM
    Campbell, MM
    CURRENT BIOLOGY, 2005, 15 (13) : 1201 - 1206
  • [45] Identification and expression analysis under abiotic stress of the R2R3-MYB genes in Ginkgo biloba L.
    Liu, Xinliang
    Yu, Wanwen
    Zhang, Xuhui
    Wang, Guibin
    Cao, Fuliang
    Cheng, Hua
    PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS, 2017, 23 (03) : 503 - 516
  • [46] Identification and expression analysis under abiotic stress of the R2R3-MYB genes in Ginkgo biloba L.
    Xinliang Liu
    Wanwen Yu
    Xuhui Zhang
    Guibin Wang
    Fuliang Cao
    Hua Cheng
    Physiology and Molecular Biology of Plants, 2017, 23 : 503 - 516
  • [47] Overexpression of soybean R2R3-MYB transcription factor, GmMYB12B2, and tolerance to UV radiation and salt stress in transgenic Arabidopsis
    Li, X. W.
    Wang, Y.
    Yan, F.
    Li, J. W.
    Zhao, Y.
    Zhao, X.
    Zhai, Y.
    Wang, Q. Y.
    GENETICS AND MOLECULAR RESEARCH, 2016, 15 (02)
  • [48] A R2R3-MYB transcription factor gene in common wheat (namely TaMYBsm1) involved in enhancement of drought tolerance in transgenic Arabidopsis
    Li, Meng-jun
    Qiao, Yu
    Li, Ya-qing
    Shi, Zhan-liang
    Zhang, Nan
    Bi, Cai-li
    Guo, Jin-kao
    JOURNAL OF PLANT RESEARCH, 2016, 129 (06) : 1097 - 1107
  • [49] A R2R3-MYB transcription factor gene in common wheat (namely TaMYBsm1) involved in enhancement of drought tolerance in transgenic Arabidopsis
    Meng-jun Li
    Yu Qiao
    Ya-qing Li
    Zhan-liang Shi
    Nan Zhang
    Cai-li Bi
    Jin-kao Guo
    Journal of Plant Research, 2016, 129 : 1097 - 1107
  • [50] Identification and Expression Analysis of R2R3-MYB Family Genes Associated with Salt Tolerance in Cyclocarya paliurus
    Zhang, Zijie
    Zhang, Lei
    Liu, Yang
    Shang, Xulan
    Fang, Shengzuo
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (07)