An R2R3-MYB FtMYB11 from Tartary buckwheat has contrasting effects on abiotic tolerance in Arabidopsis

被引:4
作者
Chen, Qian [1 ]
Peng, Lu [1 ]
Wang, Anhu [2 ]
Yu, Lingzhi [1 ]
Liu, Yu [1 ]
Zhang, Xinrong [1 ]
Wang, Ruolin [1 ]
Li, Xiaoyi [1 ]
Yang, Yi [1 ]
Li, Xufeng [1 ]
Wang, Jianmei [1 ]
机构
[1] Sichuan Univ, Coll Life Sci, Key Lab Bioresources & Ecoenvironm, Minist Educ, Chengdu 610065, Peoples R China
[2] Xichang Univ, Xichang 615013, Sichuan, Peoples R China
关键词
Fagopyrum tataricum; Tartary buckwheat; FtMYB11; Abiotic stress; TRANSCRIPTION FACTOR GENE; FLAVONOID BIOSYNTHESIS; OSMOTIC-STRESS; MYB; ACCUMULATION; REGULATOR; DROUGHT; SALT/DROUGHT; ENCODES; SALT;
D O I
10.1016/j.jplph.2022.153842
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
R2R3-MYB transcription factors play important roles in response to abiotic stresses in planta, such as salt, drought, and osmotic stress. However, the role of FtMYB11 in Tartary buckwheat (Fagopyrum tataricum) in drought and osmotic tolerance has not yet been elucidated. In this study, we found that FtMYB11 was markedly induced by exogenous abscisic acid (ABA), salinity, and mannitol. Further, FtMYB11-overexpressing Arabidopsis showed hypersensitivity to ABA-mediated seed germination and seedling establishment through regulating transcripts of AtCBF1, AtDREB2A, and AtRD20, compared with wild type, indicating that FtMYB11 plays a positive role in ABA signaling. In contrast, transgenic lines overexpressing FtMYB11 were sensitive to mannitol and NaCl treatments, suggesting that FtMYB11 plays a negative role in osmotic tolerance. Intriguingly, the transcripts of ABA biosynthetic enzyme genes were significantly elevated in plants overexpressing FtMYB11 after exposure to osmotic stresses, such as AtABA3 and AtNCED3. In addition, flavonoid biosynthesis genes were also upregulated in transgenic Arabidopsis under ABA, salt, and drought treatments, including AtC4H, AtF3H, AtANS, AtFLS, and At4CL. The drought tolerance assay showed that plants overexpressing FtMYB11 displayed greater tolerance to water deficit through regulating MDA and proline content. Taken together, FtMYB11 has opposite roles in response to abiotic stresses, but it may mediate flavonoid biosynthesis through regulation of related enzyme genes.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] A R2R3-MYB transcription factor VvMYBF1 from grapevine (Vitis vinifera L.) regulates flavonoids accumulation and abiotic stress tolerance in transgenic Arabidopsis
    Wang, Jizhong
    Wang, Feibing
    Jin, Cong
    Tong, Yao
    Wang, Tian
    JOURNAL OF HORTICULTURAL SCIENCE & BIOTECHNOLOGY, 2020, 95 (02) : 147 - 161
  • [22] A wheat R2R3-MYB gene, TaMYB30-B, improves drought stress tolerance in transgenic Arabidopsis
    Zhang, Lichao
    Zhao, Guangyao
    Xia, Chuan
    Jia, Jizeng
    Liu, Xu
    Kong, Xiuying
    JOURNAL OF EXPERIMENTAL BOTANY, 2012, 63 (16) : 5873 - 5885
  • [23] A Novel R2R3-MYB Transcription Factor FtMYB22 Negatively Regulates Salt and Drought Stress through ABA-Dependent Pathway
    Zhao, Haixia
    Yao, Panfeng
    Zhao, Jiali
    Wu, Huala
    Wang, Shuang
    Chen, Ying
    Hu, Mufan
    Wang, Tao
    Li, Chenglei
    Wu, Qi
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (23)
  • [24] Genome-wide analysis of the R2R3-MYB transcription factor gene family expressed in Juglans regia under abiotic and biotic stresses
    Yang, Kaiyu
    Dong, Qinglong
    Wu, Jianghao
    Li, Han
    Luan, Haoan
    Jia, Peng
    Zhang, Xuemei
    Guo, Suping
    Yang, Minsheng
    Qi, Guohui
    INDUSTRIAL CROPS AND PRODUCTS, 2023, 198
  • [25] The Medicago truncatula R2R3-MYB transcription factor gene MtMYBS1 enhances salinity tolerance when constitutively expressed in Arabidopsis thaliana
    Dong, Wei
    Song, Yuguang
    Zhao, Zhong
    Qiu, Nian Wei
    Liu, Xijiang
    Guo, Weihug
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2017, 490 (02) : 225 - 230
  • [26] An R2R3-MYB Transcription Factor RmMYB108 Responds to Chilling Stress of Rosa multiflora and Conferred Cold Tolerance of Arabidopsis
    Dong, Jie
    Cao, Lei
    Zhang, Xiaoying
    Zhang, Wuhua
    Yang, Tao
    Zhang, Jinzhu
    Che, Daidi
    FRONTIERS IN PLANT SCIENCE, 2021, 12
  • [27] An extensive analysis of R2R3-MYB regulatory genes from Fagus crenata
    Matsuda, Shuichi
    Wakamatsu, Naoko
    Jouyu, Hitomi
    Makita, Hajime
    Akada, Shinji
    TREE GENETICS & GENOMES, 2011, 7 (02) : 307 - 321
  • [28] FvMYB24, a strawberry R2R3-MYB transcription factor, improved salt stress tolerance in transgenic Arabidopsis
    Wang, Shuaishuai
    Shi, Mengyun
    Zhang, Yang
    Xie, Xingbin
    Sun, Peipei
    Fang, Congbing
    Zhao, Jing
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2021, 569 : 93 - 99
  • [29] Heterogeneous expression of the cotton R2R3-MYB transcription factor GbMYB60 increases salt sensitivity in transgenic Arabidopsis
    Xu, Fu-Chun
    Liu, Hui-Li
    Xu, Yun-Yun
    Zhao, Jing-Ruo
    Guo, Ya-Wei
    Long, Lu
    Gao, Wei
    Song, Chun-Peng
    PLANT CELL TISSUE AND ORGAN CULTURE, 2018, 133 (01) : 15 - 25
  • [30] Overexpression of soybean R2R3-MYB transcription factor, GmMYB12B2, and tolerance to UV radiation and salt stress in transgenic Arabidopsis
    Li, X. W.
    Wang, Y.
    Yan, F.
    Li, J. W.
    Zhao, Y.
    Zhao, X.
    Zhai, Y.
    Wang, Q. Y.
    GENETICS AND MOLECULAR RESEARCH, 2016, 15 (02)