A Hilbert reciprocity law on 3-manifolds

被引:1
作者
Niibo, Hirofumi [1 ]
Ueki, Jun [2 ]
机构
[1] Supership Inc, Toranomon Hills 27F,1-17-1 Toranomon,Minato Ku, Tokyo 1056427, Japan
[2] Ochanomizu Univ, Fac Sci, Dept Math, 2-1-1 Otsuka,Bunkyo Ku, Tokyo 1128610, Japan
关键词
Knot; 3-manifold; Idelic class field theory; Hilbert symbol; Arithmetic topology; CLASS FIELD-THEORY;
D O I
10.1007/s40687-022-00364-w
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Based on our homological idelic class field theory, we formulate an analogue of the Hilbert reciprocity law on a rational homology 3-sphere endowed with an infinite link, in the spirit of arithmetic topology; we regard the intersection form on the unitary normal bundle of each knot as an analogue of the Hilbert symbol at each prime ideal to formulate the Hilbert reciprocity law, ensuring that cyclic covers of links are analogues of Kummer extensions.
引用
收藏
页数:8
相关论文
共 17 条
  • [1] Artin E., 1928, ABH MATH SEM HAMBURG, V6, P146, DOI [10.1007/BF02940607, DOI 10.1007/BF02940607]
  • [2] Bruckner H., 1967, ALGEBRAISCHE ZAHLENT, P31
  • [3] Dainobu N, 2022, EXPLICIT RECIPROCITY
  • [4] Hirano H, 2022, OSAKA J MATH
  • [5] On 3-dimensional foliated dynamical systems and Hilbert type reciprocity law
    Kim, Junhyeong
    Morishita, Masanori
    Noda, Takeo
    Terashima, Yuji
    [J]. MUENSTER JOURNAL OF MATHEMATICS, 2021, 14 (01): : 323 - 348
  • [6] Kummer EE., 1858, J REINE ANGEW MATH, V56, P270
  • [7] Knots which behave like the prime numbers
    McMullen, Curtis T.
    [J]. COMPOSITIO MATHEMATICA, 2013, 149 (08) : 1235 - 1244
  • [8] Cohomological Approach to Class Field Theory in Arithmetic Topology
    Mihara, Tomoki
    [J]. CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2019, 71 (04): : 891 - 935
  • [9] Morishita M, 2012, UNIVERSITEXT, P1, DOI 10.100/978-1-4471-2158-9
  • [10] Neukirch J., 1999, ALGEBRAIC NUMBER THE