Phase transition in shock compressed high-entropy alloy FeNiCrCoCu

被引:37
作者
Xie, Hongcai [1 ]
Ma, Zhichao [1 ,2 ]
Zhang, Wei [1 ]
Zhao, Hongwei [1 ,2 ]
Ren, Luquan [3 ,4 ]
机构
[1] Jilin Univ, Sch Mech & Aerosp Engn, Changchun 130025, Peoples R China
[2] Jilin Univ, Key Lab CNC Equipment Reliabil, Minist Educ, Changchun 130025, Peoples R China
[3] Jilin Univ, Key Lab Bion Engn, Minist Educ, Changchun 130025, Peoples R China
[4] Jilin Univ, Weihai Inst Bion, Weihai 264400, Peoples R China
基金
中国国家自然科学基金;
关键词
High-entropy alloy; Shock; Phase transition; Molecular dynamics; DEFORMATION MECHANISMS; MOLECULAR-DYNAMICS; INDUCED PLASTICITY; SINGLE-CRYSTAL; TRANSFORMATION; STRAIN; AMORPHIZATION; STRENGTH; SILICON; SPALL;
D O I
10.1016/j.ijmecsci.2022.107855
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
High-entropy alloys (HEAs) show promising prospects to be extensively applied as functional and structural applications. Nevertheless, due to technical limitations in real-timely detecting microstructural evolution at the atomic level, an in-depth understanding with regard to dynamic deformation mechanisms is still limited. In present work, nonequilibrium molecular dynamics simulations were performed to investigate the shock-induced phase transition for the equiatomic FeNiCrCoCu HEA in terms of the crystallographic direction and shock ve-locity. The face-centered cubic to body-centered cubic phase transition due to uniaxial compression and lattice rotation was demonstrated to be prone to appearing for shock along the [001] orientation. This behavior was conducive to activating dislocation nucleation to release shear stress. More importantly, a shift from a dislocation-dominated deformation to a phase-transition-dominated one with the increase in shock velocity was corroborated to facilitate the swift stress relaxation at higher strains, contributing to the attenuation of the shock wave and thereby weakening the shock damage. These outcomes render valuable insights into understanding the dynamic deformation behavior of the FeNiCrCoCu HEA.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Shock-induced dynamic response in single and nanocrystalline high-entropy alloy FeNiCrCoCu
    Liu, Shanshan
    Feng, Genzhu
    Xiao, Lijun
    Guan, Yunlong
    Song, Weidong
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2023, 239
  • [2] Amorphization transformation in high-entropy alloy FeNiCrCoCu under shock compression
    Xie, Hongcai
    Ma, Zhichao
    Zhang, Wei
    Zhao, Hongwei
    Ren, Luquan
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2024, 175 : 72 - 79
  • [3] Graphene enables equiatomic FeNiCrCoCu high-entropy alloy with improved TWIP and TRIP effects under shock compression
    Xie, Hongcai
    Ma, Zhichao
    Zhang, Wei
    Zhao, Hongwei
    Ren, Luquan
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2024, 170 : 186 - 199
  • [4] Molecular dynamics study on friction of high-entropy alloy FeNiCrCoCu
    Wu, Yonglong
    Tan, Jing
    Li, Xinmin
    Qiu, Zhengjie
    Zhang, Runzhi
    MATERIALS TODAY COMMUNICATIONS, 2023, 37
  • [5] Molecular dynamics simulations of tensile properties for FeNiCrCoCu high-entropy alloy
    Wang, Qian
    Guo, Junhong
    Chen, Weiqiu
    Tian, Yuan
    MATERIALS TODAY COMMUNICATIONS, 2024, 38
  • [6] Microstructure Effects on Mechanical Properties of FeNiCrCoCu Nanoporous High-Entropy Alloy with Bicontinuous Characteristics
    Su, Zhenheng
    Zhang, Yuhang
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2023, 32 (12) : 5653 - 5665
  • [7] Atomic-level understanding of enhanced mechanical properties in FeNiCrCoCu high-entropy alloy
    Wang, Xuan
    Liu, Haishun
    Mo, Jinyong
    Wang, Shanzhi
    Li, Hongyang
    Yang, Weiming
    MATERIALS TODAY COMMUNICATIONS, 2023, 36
  • [8] Molecular dynamics simulations of tensile response for FeNiCrCoCu high-entropy alloy with voids
    Gao, Tinghong
    Song, Han
    Wang, Bei
    Gao, Yue
    Liu, Yutao
    Xie, Quan
    Chen, Qian
    Xiao, Qingquan
    Liang, Yongchao
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2023, 237
  • [9] Molecular dynamics simulation of a new inhomogeneous concentration distribution model based on frictional behavior of FeNiCrCoCu high-entropy alloy
    Qiu, Jiezheng
    Xu, Zhonghai
    Song, Jieren
    Hu, Chunxing
    Miao, Linlin
    He, Xiaodong
    MATERIALS TODAY COMMUNICATIONS, 2023, 35
  • [10] Microstructure Effects on Mechanical Properties of FeNiCrCoCu Nanoporous High-Entropy Alloy with Bicontinuous Characteristics
    Zhenheng Su
    Yuhang Zhang
    Journal of Materials Engineering and Performance, 2023, 32 : 5653 - 5665