Energy and stochasticity: the yin and yang of dislocation patterning

被引:5
作者
Deka, Nipal [1 ]
Alleman, Coleman [2 ]
Medlin, Douglas L. [2 ]
Sills, Ryan B. [1 ,3 ]
机构
[1] Rutgers State Univ, Dept Mat Sci & Engn, Piscataway, NJ USA
[2] Sandia Natl Labs, Livermore, CA USA
[3] Rutgers State Univ, Dept Mat Sci & Engn, 607 Taylor Rd, Piscataway, NJ 08854 USA
来源
MATERIALS RESEARCH LETTERS | 2023年 / 11卷 / 04期
关键词
Dislocation; patterning; elastic interactions; DEFORMATION; SIMULATIONS; DYNAMICS;
D O I
10.1080/21663831.2022.2149283
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Dislocations form patterns that strongly influence mechanical properties. Prevailing theories are dichotomous: patterns either form by energy minimization or stochasticity during plastic flow. Using discrete dislocation dynamics simulations, it is shown that both energy and stochasticity contribute to patterns. Monte Carlo simulations reveal that short-range forces between dislocations lead to wall-like structures, while long-range forces control the wall thickness. Perturbation simulations demonstrate that persistent, low-density regions form when the network is perturbed over sufficient deformation. These findings suggest a two-stage process where stochasticity forms low-density regions, which then lead to confined walls through local energy minimization. IMPACT STATEMENT Dislocation patterns govern mechanical properties of metals. Contrary to previous thinking, we demonstrate that both energy minimization and stochasticity govern the emergence and nature of dislocation patterns.
引用
收藏
页码:289 / 295
页数:7
相关论文
共 34 条
[1]   Enabling strain hardening simulations with dislocation dynamics [J].
Arsenlis, A. ;
Cai, W. ;
Tang, M. ;
Rhee, M. ;
Oppelstrup, T. ;
Hommes, G. ;
Pierce, T. G. ;
Bulatov, V. V. .
MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING, 2007, 15 (06) :553-595
[2]  
Basinski S. J., 1979, Dislocations in solids, vol.IV. Dislocations in metallurgy, P261
[3]   Connecting discrete and continuum dislocation mechanics: A non-singular spectral framework [J].
Bertin, Nicolas .
INTERNATIONAL JOURNAL OF PLASTICITY, 2019, 122 :268-284
[4]   A non-singular continuum theory of dislocations [J].
Cai, W ;
Arsenlis, A ;
Weinberger, CR ;
Bulatov, VV .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2006, 54 (03) :561-587
[5]  
Cai W, 2016, IMPERFECTIONS IN CRYSTALLINE SOLIDS, P1
[6]   SIZE-INDUCED DIFFUSE PHASE-TRANSITION IN THE NANOCRYSTALLINE FERROELECTRIC PBTIO3 [J].
CHATTOPADHYAY, S ;
AYYUB, P ;
PALKAR, VR ;
MULTANI, M .
PHYSICAL REVIEW B, 1995, 52 (18) :13177-13183
[7]   Monte Carlo-Discrete Dislocation Dynamics: a technique for studying the formation and evolution of dislocation structures [J].
Deka, Nipal ;
Sills, Ryan B. .
MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING, 2022, 30 (02)
[8]   Dislocation mean free paths and strain hardening of crystals [J].
Devincre, B. ;
Hoc, T. ;
Kubin, L. .
SCIENCE, 2008, 320 (5884) :1745-1748
[9]   Mesoscopic simulations of plastic deformation [J].
Devincre, B ;
Kubin, LP ;
Lemarchand, C ;
Madec, R .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2001, 309 :211-219
[10]   Dislocation patterns and the similitude principle:: 2.5D mesoscale simulations [J].
Gómez-García, D ;
Devincre, B ;
Kubin, LP .
PHYSICAL REVIEW LETTERS, 2006, 96 (12)