Asymptotically holomorphic methods for infinitely renormalizable Cr unimodal maps

被引:0
作者
Clark, Trevor [1 ]
De Faria, Edson [2 ]
Van Strien, Sebastian [1 ]
机构
[1] Imperial Coll London, London, England
[2] Univ Sao Paulo, Inst Matemat & Estat, Sao Paulo, SP, Brazil
基金
欧盟地平线“2020”; 巴西圣保罗研究基金会;
关键词
renormalization; unimodal maps; asymptotically holomorphic maps; Fatou-Julia-Sullivan theory; DIMENSIONAL DYNAMICAL-SYSTEMS; NEGATIVE SCHWARZIAN; COMPLEX BOUNDS; TOPOLOGICAL ATTRACTORS; WANDERING INTERVALS; LOCAL CONNECTIVITY; PERIODIC POINTS; REAL BOUNDS; RIGIDITY; HYPERBOLICITY;
D O I
10.1017/etds.2022.72
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The purpose of this paper is to initiate a theory concerning the dynamics of asymptotically holomorphic polynomial-like maps. Our maps arise naturally as deep renormalizations of asymptotically holomorphic extensions of C-r (r > 3) unimodal maps that are infinitely renormalizable of bounded type. Here we prove a version of the Fatou-Julia-Sullivan theorem and a topological straightening theorem in this setting. In particular, these maps do not have wandering domains and their Julia sets are locally connected.
引用
收藏
页码:3636 / 3684
页数:49
相关论文
共 64 条
[1]  
Ahlfors LV., 1966, LECT QUASICONFORMAL
[2]   QUASI-CONFORMAL SELF-MAPPINGS WITH SMOOTH BOUNDARY-VALUES [J].
ANDERSON, JM ;
HINKKANEN, A .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1994, 26 :549-556
[3]  
[Anonymous], 2006, preprint
[4]  
[Anonymous], 2000, London Mathematical Society Lecture Note
[5]  
Astala K., 2009, ELLIPTIC PARTIAL DIF
[6]   Monotonic cocycles [J].
Avila, Artur ;
Krikorian, Raphael .
INVENTIONES MATHEMATICAE, 2015, 202 (01) :271-331
[7]   The full renormalization horseshoe for unimodal maps of higher degree: exponential contraction along hybrid classes [J].
Avila, Artur ;
Lyubich, Mikhail .
PUBLICATIONS MATHEMATIQUES DE L IHES, 2011, (114) :171-223
[8]   REPELLING PERIODIC POINTS AND LANDING OF RAYS FOR POST-SINGULARLY BOUNDED EXPONENTIAL MAPS [J].
Benini, Anna Miriam ;
Lyubich, Mikhail .
ANNALES DE L INSTITUT FOURIER, 2014, 64 (04) :1493-1520
[9]   NONEXISTENCE OF WANDERING INTERVALS AND STRUCTURE OF TOPOLOGICAL ATTRACTORS OF ONE DIMENSIONAL DYNAMICAL-SYSTEMS .2. THE SMOOTH CASE [J].
BLOKH, AM ;
LYUBICH, MY .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1989, 9 :751-758
[10]   Quasiregular mappings and cohomology [J].
Bonk, M ;
Heinonen, J .
ACTA MATHEMATICA, 2001, 186 (02) :219-238