THE OBERBECK-BOUSSINESQ SYSTEM WITH NON-LOCAL BOUNDARY CONDITIONS

被引:7
作者
Abbatiello, Anna [1 ]
Feireisl, Eduard [2 ]
机构
[1] Sapienza Univ Rome, Dept Math G Castelnuovo, Piazzale Aldo Moro 5, I-00185 Rome, Italy
[2] Acad Sci Czech Republ, Inst Math, Zitna 25, Prague 1, Czech Republic
关键词
Oberbeck-Boussinesq system; non-local boundary condition; strong solution; EQUATIONS;
D O I
10.1090/qam/1635
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the Oberbeck-Boussinesq system with non-local boundary conditions arising as a singular limit of the full Navier-Stokes-Fourier system in the regime of low Mach and low Froude numbers. The existence of strong solutions is shown on a maximal time interval [0, Tmax). Moreover, Tmax = oo in the two-dimensional setting.
引用
收藏
页码:297 / 306
页数:10
相关论文
共 16 条
[1]   On a class of generalized solutions to equations describing incompressible viscous fluids [J].
Abbatiello, Anna ;
Feireisl, Eduard .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2020, 199 (03) :1183-1195
[2]  
Bella P., 2022, PREPRINT
[3]   LP-theory for a class of non-newtonian fluids [J].
Bothe, Dieter ;
Pruess, Jan .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2007, 39 (02) :379-421
[4]   Heat transfer in convective turbulence [J].
Constantin, P ;
Doering, CR .
NONLINEARITY, 1996, 9 (04) :1049-1060
[6]   Optimal Lp-Lq-estimates for parabolic boundary value problems with inhomogeneous data [J].
Denk, Robert ;
Hieber, Matthias ;
Pruess, Jan .
MATHEMATISCHE ZEITSCHRIFT, 2007, 257 (01) :193-224
[7]  
Feireisl E., 2022, NECAS CTR SERIES, DOI 10.1007/978-3-030-94793-4
[8]   ATTRACTORS FOR THE BENARD-PROBLEM - EXISTENCE AND PHYSICAL BOUNDS ON THEIR FRACTAL DIMENSION [J].
FOIAS, C ;
MANLEY, O ;
TEMAM, R .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1987, 11 (08) :939-967