Evaluation of deep learning computer vision for water level measurements in rivers

被引:3
|
作者
Liu, Wen-Cheng [1 ]
Huang, Wei-Che [1 ]
机构
[1] Natl United Univ, Dept Civil & Disaster Prevent Engn, Miaoli 360302, Taiwan
关键词
Deep learning; SegNet; Continuous image subtraction; Water level measurement; Image analysis; CAMERA IMAGES; RECOGNITION; MODELS;
D O I
10.1016/j.heliyon.2024.e25989
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Image -based gauging stations offer the potential for substantial enhancement in the monitoring networks of river water levels. Nonetheless, the majority of camera gauges fall short in delivering reliable and precise measurements because of the fluctuating appearance of water in the rivers over the course of the year. In this study, we introduce a method for measuring water levels in rivers using both the traditional continuous image subtraction (CIS) approach and a SegNet neural network based on deep learning computer vision. The historical images collected from onsite investigations were employed to train three neural networks (SegNet, U -Net, and FCN) in order to evaluate their effectiveness, overall performance, and reliability. The research findings demonstrated that the SegNet neural network outperformed the CIS method in accurately measuring water levels. The root mean square error (RMSE) between the water level measurements obtained by the SegNet neural network and the gauge station's readings ranged from 0.013 m to 0.066 m, with a high correlation coefficient of 0.998. Furthermore, the study revealed that the performance of the SegNet neural network in analyzing water levels in rivers improved with the inclusion of a larger number of images, diverse image categories, and higher image resolutions in the training dataset. These promising results emphasize the potential of deep learning computer vision technology, particularly the SegNet neural network, to enhance water level measurement in rivers. Notably, the quality and diversity of the training dataset play a crucial role in optimizing the network's performance. Overall, the application of this advanced technology holds great promise for advancing water level monitoring and management in river systems.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] Computer vision with deep learning for ship draft reading
    Wang, Bangping
    Liu, Zhiming
    Wang, Haoran
    OPTICAL ENGINEERING, 2021, 60 (02)
  • [22] Deep Learning vs. Traditional Computer Vision
    O'Mahony, Niall
    Campbell, Sean
    Carvalho, Anderson
    Harapanahalli, Suman
    Hernandez, Gustavo Velasco
    Krpalkova, Lenka
    Riordan, Daniel
    Walsh, Joseph
    ADVANCES IN COMPUTER VISION, CVC, VOL 1, 2020, 943 : 128 - 144
  • [23] Advances in solar forecasting: Computer vision with deep learning
    Paletta, Quentin
    Terren-Serrano, Guillermo
    Nie, Yuhao
    Li, Binghui
    Bieker, Jacob
    Zhang, Wenqi
    Dubus, Laurent
    Dev, Soumyabrata
    Feng, Cong
    ADVANCES IN APPLIED ENERGY, 2023, 11
  • [24] Application of Deep Learning to Computer Vision: A Comprehensive Study
    Islam, S. M. Sofiqul
    Rahman, Shanto
    Rahman, Md. Mostafijur
    Dey, Emon Kumar
    Shoyaib, Mohammad
    2016 5TH INTERNATIONAL CONFERENCE ON INFORMATICS, ELECTRONICS AND VISION (ICIEV), 2016, : 592 - 597
  • [25] Deep reinforcement learning in computer vision: a comprehensive survey
    Le, Ngan
    Rathour, Vidhiwar Singh
    Yamazaki, Kashu
    Luu, Khoa
    Savvides, Marios
    ARTIFICIAL INTELLIGENCE REVIEW, 2022, 55 (04) : 2733 - 2819
  • [26] COMPUTING PLATFORMS FOR DEEP LEARNING TASK IN COMPUTER VISION
    Kratochvila, Lukas
    PROCEEDINGS II OF THE 26TH CONFERENCE STUDENT EEICT 2020, 2020, : 171 - 175
  • [27] Deep reinforcement learning in computer vision: a comprehensive survey
    Ngan Le
    Vidhiwar Singh Rathour
    Kashu Yamazaki
    Khoa Luu
    Marios Savvides
    Artificial Intelligence Review, 2022, 55 : 2733 - 2819
  • [28] Deep Active Learning for Computer Vision: Past and Future
    Takezoe, Rinyoichi
    Liu, Xu
    Mao, Shunan
    Chen, Marco Tianyu
    Feng, Zhanpeng
    Zhang, Shiliang
    Wang, Xiaoyu
    APSIPA TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING, 2023, 12 (01)
  • [29] Deep Learning and Computer Vision: Guidelines and Special Issues
    Grewe, Lynne
    Stevenson, Garrett
    SIGNAL PROCESSING, SENSOR/INFORMATION FUSION, AND TARGET RECOGNITION XXVII, 2018, 10646
  • [30] Smart attendance using deep learning and computer vision
    Seelam, Vivek
    Penugonda, Akhil Kumar
    Kalyan, B. Pavan
    Priya, M. Bindu
    Prakash, M. Durga
    MATERIALS TODAY-PROCEEDINGS, 2021, 46 : 4091 - 4094