Efficient and stable acidic CO2 electrolysis to formic acid by a reservoir structure design

被引:58
作者
Chi, Li-Ping [1 ]
Niu, Zhuang-Zhuang [1 ]
Zhang, Yu-Cai [1 ]
Zhang, Xiao-Long [1 ]
Liao, Jie [1 ]
Wu, Zhi-Zheng [1 ]
Yu, Peng-Cheng [1 ]
Fan, Ming-Hui [1 ]
Tang, Kai-Bin [1 ]
Gao, Min-Rui [1 ]
机构
[1] Univ Sci & Technol China, Dept Chem, Div Nanomat & Chem, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Peoples R China
基金
中国国家自然科学基金;
关键词
acidic CO2 electroreduction; formic acid; locally alkaline environment |; selectivity and stability; CARBON-DIOXIDE REDUCTION; BISMUTH; ELECTROREDUCTION; TRANSFORMATION; SPECTRUM;
D O I
10.1073/pnas.2312876120
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Electrochemical synthesis of valuable chemicals and feedstocks through carbon dioxide (CO2) reduction in acidic electrolytes can surmount the considerable CO2 loss in alkaline and neutral conditions. However, achieving high productivity, while operating steadily in acidic electrolytes, remains a big challenge owing to the severe competing hydro-gen evolution reaction. Here, we show that vertically grown bismuth nanosheets on a gas- diffusion layer can create numerous cavities as electrolyte reservoirs, which confine in situ-generated hydroxide and potassium ions and limit inward proton diffusion, producing locally alkaline environments. Based on this design, we achieve formic acid Faradaic efficiency of 96.3% and partial current density of 471 mA cm-2 at pH 2. When operated in a slim continuous -flow electrolyzer, the system exhibits a full -cell formic acid energy efficiency of 40% and a single pass carbon efficiency of 79% and performs steadily over 50 h. We further demonstrate the production of pure formic acid aqueous solution with a concentration of 4.2 weight %.
引用
收藏
页数:10
相关论文
共 53 条
[1]   Suppression of Hydrogen Evolution in Acidic Electrolytes by Electrochemical CO2 Reduction [J].
Bondue, Christoph J. ;
Graf, Matthias ;
Goyal, Akansha ;
Koper, Marc T. M. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2021, 143 (01) :279-285
[2]   Surface hydroxide promotes CO2 electrolysis to ethylene in acidic conditions [J].
Cao, Yufei ;
Chen, Zhu ;
Li, Peihao ;
Ozden, Adnan ;
Ou, Pengfei ;
Ni, Weiyan ;
Abed, Jehad ;
Shirzadi, Erfan ;
Zhang, Jinqiang ;
Sinton, David ;
Ge, Jun ;
Sargent, Edward H. H. .
NATURE COMMUNICATIONS, 2023, 14 (01)
[3]   Exploration of the bio-analogous asymmetric C-C coupling mechanism in tandem CO2 electroreduction [J].
Chen, Chubai ;
Yu, Sunmoon ;
Yang, Yao ;
Louisia, Sheena ;
Roh, Inwhan ;
Jin, Jianbo ;
Chen, Shouping ;
Chen, Peng-Cheng ;
Shan, Yu ;
Yang, Peidong .
NATURE CATALYSIS, 2022, 5 (10) :878-887
[4]   Stabilizing indium sulfide for CO2 electroreduction to formate at high rate by zinc incorporation [J].
Chi, Li-Ping ;
Niu, Zhuang-Zhuang ;
Zhang, Xiao-Long ;
Yang, Peng-Peng ;
Liao, Jie ;
Gao, Fei-Yue ;
Wu, Zhi-Zheng ;
Tang, Kai-Bin ;
Gao, Min-Rui .
NATURE COMMUNICATIONS, 2021, 12 (01)
[5]   CO2 electrolysis to multicarbon products at activities greater than 1 A cm-2 [J].
de Arquer, F. Pelayo Garcia ;
Cao-Thang Dinh ;
Ozden, Adnan ;
Wicks, Joshua ;
McCallum, Christopher ;
Kirmani, Ahmad R. ;
Dae-Hyun Nam ;
Gabardo, Christine ;
Seifitokaldani, Ali ;
Wang, Xue ;
Li, Yuguang C. ;
Li, Fengwang ;
Edwards, Jonathan ;
Richter, Lee J. ;
Thorpe, Steven J. ;
Sinton, David ;
Sargent, Edward H. .
SCIENCE, 2020, 367 (6478) :661-+
[6]   What would it take for renewably powered electrosynthesis to displace petrochemical processes? [J].
De Luna, Phil ;
Hahn, Christopher ;
Higgins, Drew ;
Jaffer, Shaffiq A. ;
Jaramillo, Thomas F. ;
Sargent, Edward H. .
SCIENCE, 2019, 364 (6438) :350-+
[7]   Operando Spectroscopic Analysis of Axial Oxygen-Coordinated Single-Sn-Atom Sites for Electrochemical CO2 Reduction [J].
Deng, Yachen ;
Zhao, Jian ;
Wang, Shifu ;
Chen, Ruru ;
Ding, Jie ;
Tsai, Hsin-Jung ;
Zeng, Wen-Jing ;
Hung, Sung-Fu ;
Xu, Wei ;
Wang, Junhu ;
Jaouen, Frederic ;
Li, Xuning ;
Huang, Yanqiang ;
Liu, Bin .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2023, 145 (13) :7242-7251
[8]   INFRARED-SPECTRUM OF CARBON-DIOXIDE IN AQUEOUS-SOLUTION [J].
FALK, M ;
MILLER, AG .
VIBRATIONAL SPECTROSCOPY, 1992, 4 (01) :105-108
[9]   Probing the Reaction Mechanism of CO2 Electroreduction over Ag Films via Operando Infrared Spectroscopy [J].
Firet, Nienke J. ;
Smith, Wilson A. .
ACS CATALYSIS, 2017, 7 (01) :606-612
[10]   The Technical and Energetic Challenges of Separating (Photo)Electrochemical Carbon Dioxide Reduction Products [J].
Greenblatt, Jeffery B. ;
Miller, Daniel J. ;
Ager, Joel W. ;
Houle, Frances A. ;
Sharp, Ian D. .
JOULE, 2018, 2 (03) :381-420