Breast Cancer Segmentation From Ultrasound Images Using Deep Dual-Decoder Technology With Attention Network

被引:13
作者
Hekal, Asmaa A. [1 ]
Elnakib, Ahmed [1 ,2 ]
Moustafa, Hossam El-Din [1 ]
Amer, Hanan M. [1 ]
机构
[1] Mansoura Univ, Fac Engn, Elect & Commun Engn ECE Dept, Mansoura 35516, Egypt
[2] Penn State Erie Behrend Coll, Sch Engn, Elect & Comp Engn Dept, Erie, PA 16563 USA
关键词
Breast ultrasound; tumor segmentation; deep learning; image segmentation; image detection; AUTOMATED SEGMENTATION;
D O I
10.1109/ACCESS.2024.3351564
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper introduces a deep learning approach for breast cancer segmentation from ultrasound imaging using a Dual Decoder Attention ResUNet (DDA-AttResUNet). DDA-AttResUNet utilizes a Dual Decoder Attention structure to simultaneously focus on tumor segmentation while also capturing supplementary contextual information, leading to enhanced segmentation accuracy. An Attention mechanism is incorporated to enhance the representation of segmented regions by effectively combining information from multiple sources. The model's performance is validated on a public challenging dataset of 780 Breast Ultrasound Images (BUSI), achieving a Dice similarity coefficient of 92.92 +/- 0.69%, Intersection over Union of 87.39 +/- 1.10%, Sensitivity of 92.16 +/- 0.92%, Precision of 93.90 +/- 0.40%, and Accuracy of 98.82 +/- 0.10%, using 10-fold cross-validation. These results, comparable to other leading methods, indicate that our DDA-AttResUNet can significantly advance breast tumor segmentation in BUS imaging, with implications for improved diagnosis and patient outcomes.
引用
收藏
页码:10087 / 10101
页数:15
相关论文
共 48 条
[1]   Dataset of breast ultrasound images [J].
Al-Dhabyani, Walid ;
Gomaa, Mohammed ;
Khaled, Hussien ;
Fahmy, Aly .
DATA IN BRIEF, 2020, 28
[2]   Breast microscopic cancer segmentation and classification using unique 4-qubit-quantum model [J].
Amin, Javaria ;
Sharif, Muhammad ;
Fernandes, Steven Lawrence ;
Wang, Shui-Hua ;
Saba, Tanzila ;
Khan, Amjad Rehman .
MICROSCOPY RESEARCH AND TECHNIQUE, 2022, 85 (05) :1926-1936
[3]   A distinctive approach in brain tumor detection and classification using MRI [J].
Amin, Javeria ;
Sharif, Muhammad ;
Yasmin, Mussarat ;
Fernandes, Steven Lawrence .
PATTERN RECOGNITION LETTERS, 2020, 139 :118-127
[4]   Breast MRI Segmentation by Deep Learning: Key Gaps and Challenges [J].
Askaripour, Khadijeh ;
Zak, Arkadiusz .
IEEE ACCESS, 2023, 11 :117935-117946
[5]  
Byra M, 2020, Arxiv, DOI [arXiv:2001.10061, DOI 10.48550/ARXIV.2001.10061, 10.48550/ARXIV.2001.10061]
[6]   Ultrasound-guided preoperative localization of breast lesions: a good choice [J].
Carlino, Giorgio ;
Rinaldi, Pierluigi ;
Giuliani, Michela ;
Rella, Rossella ;
Bufi, Enida ;
Padovano, Federico ;
Ciardi, Chiara ;
Romani, Maurizio ;
Belli, Paolo ;
Manfredi, Riccardo .
JOURNAL OF ULTRASOUND, 2019, 22 (01) :85-94
[7]   Segmentation of breast tumor in three-dimensional ultrasound images using three-dimensional discrete active contour model [J].
Chang, RF ;
Wu, WJ ;
Moon, WK ;
Chen, WM ;
Lee, W ;
Chen, DR .
ULTRASOUND IN MEDICINE AND BIOLOGY, 2003, 29 (11) :1571-1581
[8]   InvUNET: Involuted UNET for Breast Tumor Segmentation from Ultrasound [J].
Chavan, Trupti ;
Prajapati, Kalpesh ;
Rao, Kameshwar J., V .
ARTIFICIAL INTELLIGENCE IN MEDICINE, AIME 2022, 2022, 13263 :283-290
[9]   AAU-Net: An Adaptive Attention U-Net for Breast Lesions Segmentation in Ultrasound Images [J].
Chen, Gongping ;
Li, Lei ;
Dai, Yu ;
Zhang, Jianxun ;
Yap, Moi Hoon .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2023, 42 (05) :1289-1300
[10]   CELL-BASED GRAPH CUT FOR SEGMENTATION OF 2D/3D SONOGRAPHIC BREAST IMAGES [J].
Chiang, Hsin-Hung ;
Cheng, Jie-Zhi ;
Hung, Pei-Kai ;
Liu, Chun-You ;
Chung, Cheng-Hong ;
Chen, Chung-Ming .
2010 7TH IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: FROM NANO TO MACRO, 2010, :177-180