A sub-Riemannian maximum modulus theorem

被引:0
|
作者
Buseghin, Federico [2 ]
Forcillo, Nicolo [3 ]
Garofalo, Nicola [1 ]
机构
[1] Univ Padua, Dipartimento Ingn Civile & Ambientale DICEA, Via Marzolo 9, I-35131 Padua, Italy
[2] Univ Bath, Dept Math Sci, Bath BA2 7AY, England
[3] Michigan State Univ, Dept Math, E Lansing, MI 48824 USA
关键词
Bochner formulas; right-invariant vector fields; maximum modulus theorem; FULLY NONLINEAR EQUATIONS; CARNOT GROUPS; REGULARITY;
D O I
10.1515/acv-2023-0066
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this note we prove a sub-Riemannian maximum modulus theorem in a Carnot group. Using a nontrivial counterexample, we also show that such result is best possible, in the sense that in its statement one cannot replace the right-invariant horizontal gradient with the left-invariant one.
引用
收藏
页码:143 / 150
页数:8
相关论文
共 50 条
  • [31] Sub-Riemannian Engel Sphere
    Sachkov, Yu L.
    Popov, A. Yu
    DOKLADY MATHEMATICS, 2021, 104 (02) : 301 - 305
  • [32] Classification of sub-Riemannian manifolds
    S. K. Vodop’yanov
    I. G. Markina
    Siberian Mathematical Journal, 1998, 39 : 1096 - 1111
  • [33] About sub-Riemannian spheres
    Rifford, L.
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2006, 13 (03) : 521 - 526
  • [34] Sub-Riemannian Cartan Sphere
    Yu. L. Sachkov
    Doklady Mathematics, 2022, 106 : 462 - 466
  • [35] Topics in sub-Riemannian geometry
    Agrachev, A. A.
    RUSSIAN MATHEMATICAL SURVEYS, 2016, 71 (06) : 989 - 1019
  • [36] k-Step Sub-Riemannian Manifold whose Sub-Riemannian Metric Admits a Canonical Extension to a Riemannian Metric
    M. M. Diniz
    J. M. M. Veloso
    Journal of Dynamical and Control Systems, 2010, 16 : 517 - 538
  • [37] Sub-Laplacians on Sub-Riemannian Manifolds
    Maria Gordina
    Thomas Laetsch
    Potential Analysis, 2016, 44 : 811 - 837
  • [38] k-STEP SUB-RIEMANNIAN MANIFOLD WHOSE SUB-RIEMANNIAN METRIC ADMITS A CANONICAL EXTENSION TO A RIEMANNIAN METRIC
    Diniz, M. M.
    Veloso, J. M. M.
    JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2010, 16 (04) : 517 - 538
  • [39] Sub-Laplacians on Sub-Riemannian Manifolds
    Gordina, Maria
    Laetsch, Thomas
    POTENTIAL ANALYSIS, 2016, 44 (04) : 811 - 837
  • [40] On the Heat Diffusion for Generic Riemannian and Sub-Riemannian Structures
    Barilari, Davide
    Boscain, Ugo
    Charlot, Gregoire
    Neel, Robert W.
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2017, 2017 (15) : 4639 - 4672