A limiting case in partial regularity for quasiconvex functionals

被引:0
作者
Piccinini, Mirco [1 ]
机构
[1] Univ Parma, Dipartimento Matemat & Informat, Campus Parco Area Sci 53-a, I-43124 Parma, Italy
来源
MATHEMATICS IN ENGINEERING | 2024年 / 6卷 / 01期
关键词
regularity; quasiconvex functionals; degenerate variational integrals; HARMONIC APPROXIMATION; LOWER SEMICONTINUITY; ELLIPTIC-SYSTEMS; MINIMIZERS; QUASICONVEXITY; CALCULUS;
D O I
10.3934/mine.2024001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Local minimizers of nonhomogeneous quasiconvex variational integrals with standard p -growth of the type w bar right arrow integral[F(Dw) - f . w] dx feature almost everywhere BMO-regular gradient provided that f belongs to the borderline Marcinkiewicz space L(n, infinity).
引用
收藏
页码:1 / 27
页数:27
相关论文
共 50 条
[41]   NONCOINCIDENCE OF APPROXIMATE AND LIMITING SUBDIFFERENTIALS OF INTEGRAL FUNCTIONALS [J].
Jourani, Abderrahim ;
Thibault, Lionel .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2011, 49 (04) :1435-1453
[42]   EXISTENCE OF MINIMIZERS FOR NON-QUASICONVEX FUNCTIONALS BY STRICT MONOTONICITY [J].
Zagatti, Sandro .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2023, 22 (12) :3330-3342
[43]   Everywhere regularity of functionals with φ-growth [J].
Diening, Lars ;
Stroffolini, Bianca ;
Verde, Anna .
MANUSCRIPTA MATHEMATICA, 2009, 129 (04) :449-481
[44]   Regularity for a class of integral functionals [J].
Li, Shuoyang ;
Gao, Meng ;
Gao, Hongya .
MATHEMATISCHE NACHRICHTEN, 2024, 297 (09) :3410-3422
[45]   Boundary regularity for almost minimizers of quasiconvex variational problems [J].
Manfred Kronz .
Nonlinear Differential Equations and Applications NoDEA, 2005, 12 :351-382
[46]   Lipschitz regularity for orthotropic functionals with nonstandard growth conditions [J].
Bousquet, Pierre ;
Brasco, Lorenzo .
REVISTA MATEMATICA IBEROAMERICANA, 2020, 36 (07) :1989-2032
[47]   Partial Differential Equations.-Partial regularity for elliptic systems with critical growth [J].
Isernia, T. E. R. E. S. A. ;
Leone, C. H. I. A. R. A. ;
Verde, A. N. N. A. .
RENDICONTI LINCEI-MATEMATICA E APPLICAZIONI, 2022, 33 (02) :271-296
[48]   A DIRECT PROOF OF THE TONELLI'S PARTIAL REGULARITY RESULT [J].
Ferriero, Alessandro .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2012, 32 (06) :2089-2099
[49]   A C1,α partial regularity result for integral functionals with p(x)-growth condition [J].
Giannetti, Flavia .
ADVANCES IN CALCULUS OF VARIATIONS, 2016, 9 (04) :395-407
[50]   ON THE TONELLI'S PARTIAL REGULARITY [J].
Ferriero, Alessandro .
DIFFERENTIAL AND INTEGRAL EQUATIONS, 2013, 26 (1-2) :1-9