A limiting case in partial regularity for quasiconvex functionals

被引:0
作者
Piccinini, Mirco [1 ]
机构
[1] Univ Parma, Dipartimento Matemat & Informat, Campus Parco Area Sci 53-a, I-43124 Parma, Italy
来源
MATHEMATICS IN ENGINEERING | 2024年 / 6卷 / 01期
关键词
regularity; quasiconvex functionals; degenerate variational integrals; HARMONIC APPROXIMATION; LOWER SEMICONTINUITY; ELLIPTIC-SYSTEMS; MINIMIZERS; QUASICONVEXITY; CALCULUS;
D O I
10.3934/mine.2024001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Local minimizers of nonhomogeneous quasiconvex variational integrals with standard p -growth of the type w bar right arrow integral[F(Dw) - f . w] dx feature almost everywhere BMO-regular gradient provided that f belongs to the borderline Marcinkiewicz space L(n, infinity).
引用
收藏
页码:1 / 27
页数:27
相关论文
共 50 条
[22]   Partial and full boundary regularity for non-autonomous functionals with Φ-growth conditions [J].
Giannetti, Flavia ;
di Napoli, Antonia Passarelli ;
Tachikawa, Atsushi .
FORUM MATHEMATICUM, 2019, 31 (04) :1027-1050
[23]   Regularity of Relaxed Minimizers of Quasiconvex Variational Integrals with (p, q)-growth [J].
Schmidt, Thomas .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2009, 193 (02) :311-337
[24]   On the minimum problem for non-quasiconvex vectorial functionals [J].
Zagatti, Sandro .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2022, 29 (06)
[25]   Regularity for Double Phase Functionals with Two Modulating Coefficients [J].
Kim, Bogi ;
Oh, Jehan .
JOURNAL OF GEOMETRIC ANALYSIS, 2024, 34 (05)
[26]   Partial regularity of minimizers of functionals with discontinuous coefficients of low integrability with applications to nonlinear elliptic systems [J].
Goodrich, Christopher S. .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2018, 43 (11) :1599-1626
[27]   Partial Hölder regularity for asymptotically convex functionals with borderline double-phase growth [J].
Chang, Wenrui ;
Zheng, Shenzhou .
MATHEMATISCHE NACHRICHTEN, 2025, 298 (03) :1018-1040
[28]   Partial regularity of minimizers of asymptotically convex functionals with p(x)-growth [J].
Goodrich, Christopher S. ;
Scapellato, Andrea .
STUDIA MATHEMATICA, 2022,
[29]   Partial regularity for non autonomous functionals with non standard growth conditions [J].
De Maria, Bruno ;
di Napoli, Antonia Passarelli .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2010, 38 (3-4) :417-439
[30]   Partial regularity of minimizers of asymptotically convex functionals with p(x)-growth [J].
Goodrich, Christopher S. ;
Scapellato, Andrea .
STUDIA MATHEMATICA, 2022, 264 (01) :71-102