Spatio-Temporal Heterogeneous Graph-Based Convolutional Networks for Traffic Flow Forecasting

被引:0
作者
Ma, Zhaobin [1 ]
Lv, Zhiqiang [1 ]
Xin, Xiaoyang [1 ]
Cheng, Zesheng [1 ]
Xia, Fengqian [1 ]
Li, Jianbo [1 ]
机构
[1] Qingdao Univ, Coll Comp Sci & Technol, Qingdao, Peoples R China
基金
中国国家自然科学基金;
关键词
operations; traffic flow theory and characteristics; models; network; traffic flow; PREDICTION; MODEL;
D O I
10.1177/03611981231213878
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Traffic flow forecasting plays a crucial role in the construction of intelligent transportation. The aims of this paper are to fully exploit the spatial correlation between nodes in a traffic network and to compensate for the inability of graph-based deep learning methods to model multiple relationship types, resulting in inadequate extraction of spatially correlated information about the traffic network. In this paper, we propose a deep spatio-temporal recurrent evolution network based on the graph convolution network (STREGCN) for heterogeneous graphs. Specifically, we transform the traffic network into a multi-relational heterogeneous graph to improve the information representation of the graph. This allows our model to capture multiple types of spatially relevant information. In the temporal dimension, we use one-dimensional causal convolution based on the gated linear unit to extract the temporal correlation information of the traffic flow. In addition, we designed the output of the spatio-temporal convolution module to obtain the final traffic flow predictions after a fully connected layer. Experiments on real datasets illustrate the effectiveness of the proposed STREGCN model and show the importance of representing information through heterogeneous graphs for the task of traffic flow prediction.
引用
收藏
页码:120 / 133
页数:14
相关论文
共 50 条
  • [41] SASTGCN: A Self-Adaptive Spatio-Temporal Graph Convolutional Network for Traffic Prediction
    Li, Wei
    Zhan, Xi
    Liu, Xin
    Zhang, Lei
    Pan, Yu
    Pan, Zhisong
    ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2023, 12 (08)
  • [42] Spatial temporal incidence dynamic graph neural networks for traffic flow forecasting
    Peng, Hao
    Wang, Hongfei
    Du, Bowen
    Bhuiyan, Md Zakirul Alam
    Ma, Hongyuan
    Liu, Jianwei
    Wang, Lihong
    Yang, Zeyu
    Du, Linfeng
    Wang, Senzhang
    Yu, Philip S.
    INFORMATION SCIENCES, 2020, 521 : 277 - 290
  • [43] Traffic Flow Forecasting with Spatial-Temporal Graph Convolutional Networks in Edge-Computing Systems
    Xu, Xianlu
    Zheng, Haifeng
    Feng, Xinxin
    Chen, Youjia
    2020 12TH INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS AND SIGNAL PROCESSING (WCSP), 2020, : 251 - 256
  • [44] Day-Ahead Hourly Solar Irradiance Forecasting Based on Multi-Attributed Spatio-Temporal Graph Convolutional Network
    Jeon, Hyeon-Ju
    Choi, Min-Woo
    Lee, O-Joun
    SENSORS, 2022, 22 (19)
  • [45] PGCN: Progressive Graph Convolutional Networks for Spatial-Temporal Traffic Forecasting
    Shin, Yuyol
    Yoon, Yoonjin
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2024, 25 (07) : 7633 - 7644
  • [46] Spatio-Temporal Contrastive Learning-Based Adaptive Graph Augmentation for Traffic Flow Prediction
    Zhang, Dingkai
    Wang, Pengfei
    Ding, Lu
    Wang, Xiaoling
    He, Jifeng
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2025, 26 (01) : 1304 - 1318
  • [47] Dynamic Spatial-Temporal Convolutional Networks for Traffic Flow Forecasting
    Zhang, Hong
    Kan, Sunan
    Zhang, XiJun
    Cao, Jie
    Zhao, Tianxin
    TRANSPORTATION RESEARCH RECORD, 2023, 2677 (09) : 489 - 498
  • [48] Foresight plus: serverless spatio-temporal traffic forecasting
    Oakley, Joe
    Conlan, Chris
    Demirci, Gunduz Vehbi
    Sfyridis, Alexandros
    Ferhatosmanoglu, Hakan
    GEOINFORMATICA, 2024, 28 (04) : 649 - 677
  • [49] LoadSeer: Exploiting Tensor Graph Convolutional Network for Power Load Forecasting With Spatio-Temporal Characteristics
    Zhang, Jiahao
    Yu, Bin
    Lai, Hanbin
    Liu, Lin
    Zhou, Jinghui
    Lou, Fengliang
    Ni, Yili
    Peng, Yan
    Yu, Ziheng
    IEEE ACCESS, 2024, 12 : 190337 - 190346
  • [50] BigST: Linear Complexity Spatio-Temporal Graph Neural Network for Traffic Forecasting on Large-Scale Road Networks
    Han, Jindong
    Zhang, Weijia
    Liu, Hao
    Tao, Tao
    Tan, Naiqiang
    Xiong, Hui
    PROCEEDINGS OF THE VLDB ENDOWMENT, 2024, 17 (05): : 1081 - 1090