Spatio-Temporal Heterogeneous Graph-Based Convolutional Networks for Traffic Flow Forecasting

被引:0
|
作者
Ma, Zhaobin [1 ]
Lv, Zhiqiang [1 ]
Xin, Xiaoyang [1 ]
Cheng, Zesheng [1 ]
Xia, Fengqian [1 ]
Li, Jianbo [1 ]
机构
[1] Qingdao Univ, Coll Comp Sci & Technol, Qingdao, Peoples R China
基金
中国国家自然科学基金;
关键词
operations; traffic flow theory and characteristics; models; network; traffic flow; PREDICTION; MODEL;
D O I
10.1177/03611981231213878
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Traffic flow forecasting plays a crucial role in the construction of intelligent transportation. The aims of this paper are to fully exploit the spatial correlation between nodes in a traffic network and to compensate for the inability of graph-based deep learning methods to model multiple relationship types, resulting in inadequate extraction of spatially correlated information about the traffic network. In this paper, we propose a deep spatio-temporal recurrent evolution network based on the graph convolution network (STREGCN) for heterogeneous graphs. Specifically, we transform the traffic network into a multi-relational heterogeneous graph to improve the information representation of the graph. This allows our model to capture multiple types of spatially relevant information. In the temporal dimension, we use one-dimensional causal convolution based on the gated linear unit to extract the temporal correlation information of the traffic flow. In addition, we designed the output of the spatio-temporal convolution module to obtain the final traffic flow predictions after a fully connected layer. Experiments on real datasets illustrate the effectiveness of the proposed STREGCN model and show the importance of representing information through heterogeneous graphs for the task of traffic flow prediction.
引用
收藏
页码:120 / 133
页数:14
相关论文
共 50 条
  • [31] Unified Spatio-Temporal Modeling for Traffic Forecasting using Graph Neural Network
    Roy, Amit
    Roy, Kashob Kumar
    Ali, Amin Ahsan
    Amin, M. Ashraful
    Rahman, A. K. M. Mahbubur
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [32] Spatial-Temporal Similarity Fusion Graph Adversarial Convolutional Networks for traffic flow forecasting
    Wang, Bin
    Long, Zhendan
    Sheng, Jinfang
    Zhong, Qiang
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2024, 361 (17):
  • [33] Spatial-temporal correlation graph convolutional networks for traffic forecasting
    Huang, Ru
    Chen, Zijian
    Zhai, Guangtao
    He, Jianhua
    Chu, Xiaoli
    IET INTELLIGENT TRANSPORT SYSTEMS, 2023, 17 (07) : 1380 - 1394
  • [34] Graph learning-based spatial-temporal graph convolutional neural networks for traffic forecasting
    Hu, Na
    Zhang, Dafang
    Xie, Kun
    Liang, Wei
    Hsieh, Meng-Yen
    CONNECTION SCIENCE, 2022, 34 (01) : 429 - 448
  • [35] Beyond spatial neighbors: Utilizing multivariate transfer entropy for interpretable graph-based spatio-temporal forecasting
    Berkani, Safaa
    Bahaj, Adil
    Guermah, Bassma
    Ghogho, Mounir
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2025, 146
  • [36] MLP for Spatio-Temporal Traffic Volume Forecasting
    Dimara, Asimina
    Triantafyllidis, Dimitrios
    Krinidis, Stelios
    Kitsikoudis, Konstantinos
    Ioannidis, Dimosthenis
    Valkouma, Efthalia
    Skarvelakis, Stilianos
    Antipas, Stavros
    Tzovaras, Dimitrios
    2021 IEEE INTERNATIONAL IOT, ELECTRONICS AND MECHATRONICS CONFERENCE (IEMTRONICS), 2021, : 764 - 770
  • [37] Dynamic Multi-Graph Spatio-Temporal Graph Traffic Flow Prediction in Bangkok: An Application of a Continuous Convolutional Neural Network
    Promsawat, Pongsakon
    Sae-dan, Weerapan
    Kaewsuwan, Marisa
    Sudsutad, Weerawat
    Aphithana, Aphirak
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2025, 142 (01): : 579 - 607
  • [38] Convolutional Graph Autoencoder: A Generative Deep Neural Network for Probabilistic Spatio-Temporal Solar Irradiance Forecasting
    Khodayar, Mandi
    Mohammadi, Saeed
    Khodayar, Mohammad E.
    Wang, Jianhui
    Liu, Guangyi
    IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, 2020, 11 (02) : 571 - 583
  • [39] Predicting Traffic Flow via Ensemble Deep Convolutional Neural Networks with Spatio-temporal Joint Relations
    Hou, Jiaxin
    Chen, Jing
    Liao, Shijie
    Wen, Junhao
    Xiong, Qingyu
    2018 24TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2018, : 1487 - 1492
  • [40] Dynamic graph convolutional networks based on spatiotemporal data embedding for traffic flow forecasting
    Zhang, Wenyu
    Zhu, Kun
    Zhang, Shuai
    Chen, Qian
    Xu, Jiyuan
    KNOWLEDGE-BASED SYSTEMS, 2022, 250