Spatio-Temporal Heterogeneous Graph-Based Convolutional Networks for Traffic Flow Forecasting

被引:0
|
作者
Ma, Zhaobin [1 ]
Lv, Zhiqiang [1 ]
Xin, Xiaoyang [1 ]
Cheng, Zesheng [1 ]
Xia, Fengqian [1 ]
Li, Jianbo [1 ]
机构
[1] Qingdao Univ, Coll Comp Sci & Technol, Qingdao, Peoples R China
基金
中国国家自然科学基金;
关键词
operations; traffic flow theory and characteristics; models; network; traffic flow; PREDICTION; MODEL;
D O I
10.1177/03611981231213878
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Traffic flow forecasting plays a crucial role in the construction of intelligent transportation. The aims of this paper are to fully exploit the spatial correlation between nodes in a traffic network and to compensate for the inability of graph-based deep learning methods to model multiple relationship types, resulting in inadequate extraction of spatially correlated information about the traffic network. In this paper, we propose a deep spatio-temporal recurrent evolution network based on the graph convolution network (STREGCN) for heterogeneous graphs. Specifically, we transform the traffic network into a multi-relational heterogeneous graph to improve the information representation of the graph. This allows our model to capture multiple types of spatially relevant information. In the temporal dimension, we use one-dimensional causal convolution based on the gated linear unit to extract the temporal correlation information of the traffic flow. In addition, we designed the output of the spatio-temporal convolution module to obtain the final traffic flow predictions after a fully connected layer. Experiments on real datasets illustrate the effectiveness of the proposed STREGCN model and show the importance of representing information through heterogeneous graphs for the task of traffic flow prediction.
引用
收藏
页码:120 / 133
页数:14
相关论文
共 50 条
  • [21] Short-term spatio-temporal forecasting of air temperatures using deep graph convolutional neural networks
    Garcia-Duarte, Lucia
    Cifuentes, Jenny
    Marulanda, Geovanny
    STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2023, 37 (05) : 1649 - 1667
  • [22] Spatio-Temporal Traffic Flow Prediction in Madrid: An Application of Residual Convolutional Neural Networks
    Velez-Serrano, Daniel
    Alvaro-Meca, Alejandro
    Sebastian-Huerta, Fernando
    Velez-Serrano, Jose
    MATHEMATICS, 2021, 9 (09)
  • [23] Multi-graph representation spatio-temporal attention networks for traffic forecasting in the cinematic metaverse
    Li, Ke
    He, Xiaoming
    Liu, Yinqiu
    Chen, Meng
    TRANSACTIONS ON EMERGING TELECOMMUNICATIONS TECHNOLOGIES, 2024, 35 (07):
  • [24] DMSTG: Dynamic Multiview Spatio-Temporal Networks for Traffic Forecasting
    Diao, Zulong
    Wang, Xin
    Zhang, Dafang
    Xie, Gaogang
    Chen, Jianguo
    Pei, Changhua
    Meng, Xuying
    Xie, Kun
    Zhang, Guangxing
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2024, 23 (06) : 6865 - 6880
  • [25] Multi-scale 4D localized spatio-temporal graph convolutional networks for spatio-temporal sequences forecasting in aluminum electrolysis
    Sun, Yubo
    Chen, Xiaofang
    Gui, Weihua
    Cen, Lihui
    Xie, Yongfang
    Zou, Zhong
    ADVANCED ENGINEERING INFORMATICS, 2025, 65
  • [26] Dynamic spatial-temporal graph convolutional recurrent networks for traffic flow forecasting
    Xia, Zhichao
    Zhang, Yong
    Yang, Jielong
    Xie, Linbo
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 240
  • [27] Probabilistic trajectory prediction of heterogeneous traffic agents based on layered spatio-temporal graph
    Zhang, Xuexiang
    Zhang, Weiwei
    Wu, Xuncheng
    Cao, Wenguan
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART D-JOURNAL OF AUTOMOBILE ENGINEERING, 2021, 235 (09) : 2413 - 2424
  • [28] Graph attention temporal convolutional network for traffic speed forecasting on road networks
    Zhang, Ke
    He, Fang
    Zhang, Zhengchao
    Lin, Xi
    Li, Meng
    TRANSPORTMETRICA B-TRANSPORT DYNAMICS, 2021, 9 (01) : 153 - 171
  • [29] A Graph-Based Temporal Attention Framework for Multi-Sensor Traffic Flow Forecasting
    Zhang, Shaokun
    Guo, Yao
    Zhao, Peize
    Zheng, Chuanpan
    Chen, Xiangqun
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (07) : 7743 - 7758
  • [30] Multi-Hierarchical Spatial-Temporal Graph Convolutional Networks for Traffic Flow Forecasting
    Li, Zilong
    Ren, Qianqian
    Chen, Long
    Sui, Xiaohong
    Li, Jinbao
    2022 26TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2022, : 4913 - 4919