Separation of transcriptional repressor and activator functions in Drosophila HDAC3

被引:3
作者
Tang, Min [1 ,2 ]
Regadas, Isabel [1 ]
Belikov, Sergey [1 ]
Shilkova, Olga [1 ,3 ]
Xu, Lei [4 ,5 ]
Wernersson, Erik [4 ]
Liu, Xuewen [2 ]
Wu, Hongmei [2 ]
Bienko, Magda [4 ,5 ]
Mannervik, Mattias [1 ]
机构
[1] Stockholm Univ, Wenner Gren Inst, Dept Mol Biosci, S-10691 Stockholm, Sweden
[2] Univ South China, Dept Biochem & Mol Biol, Hengyang 421001, Peoples R China
[3] Karolinska Inst, Dept Biosci & Nutr, SE-14183 Huddinge, Sweden
[4] Karolinska Inst, Dept Med Biochem & Biophys, S-17165 Stockholm, Sweden
[5] Sci Life Lab, S-17165 Stockholm, Sweden
来源
DEVELOPMENT | 2023年 / 150卷 / 15期
基金
中国国家自然科学基金;
关键词
HDAC3; Histone deacetylase; Chromatin; Transcription; Embryo development; Drosophila; HISTONE DEACETYLASE 3; NUCLEAR-ENVELOPE PROTEIN; GENE-EXPRESSION; ACETYLATION; MECHANISM; INTERACTS; DELETION; PROGRAM; DOMAINS; H4;
D O I
10.1242/dev.201548
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
The histone deacetylase HDAC3 is associated with the NCoR/SMRT co-repressor complex, and its canonical function is in transcriptional repression, but it can also activate transcription. Here, we show that the repressor and activator functions of HDAC3 can be genetically separated in Drosophila. A lysine substitution in the N terminus (K26A) disrupts its catalytic activity and activator function, whereas a combination of substitutions (HEBI) abrogating the interaction with SMRTER enhances repressor activity beyond wild type in the early embryo. We conclude that the crucial functions of HDAC3 in embryo development involve catalytic-dependent gene activation and non-enzymatic repression by several mechanisms, including tethering of loci to the nuclear periphery.
引用
收藏
页数:12
相关论文
共 59 条
[11]   STAR: ultrafast universal RNA-seq aligner [J].
Dobin, Alexander ;
Davis, Carrie A. ;
Schlesinger, Felix ;
Drenkow, Jorg ;
Zaleski, Chris ;
Jha, Sonali ;
Batut, Philippe ;
Chaisson, Mark ;
Gingeras, Thomas R. .
BIOINFORMATICS, 2013, 29 (01) :15-21
[12]   Genetic compensation: A phenomenon in search of mechanisms [J].
El-Brolosy, Mohamed A. ;
Stainier, Didier Y. R. .
PLOS GENETICS, 2017, 13 (07)
[13]   Integrative regulation of physiology by histone deacetylase 3 [J].
Emmett, Matthew J. ;
Lazar, Mitchell A. .
NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2019, 20 (02) :102-115
[14]   Histone deacetylase 3 prepares brown adipose tissue for acute thermogenic challenge [J].
Emmett, Matthew J. ;
Lim, Hee-Woong ;
Jager, Jennifer ;
Richter, Hannah J. ;
Adlanmerini, Marine ;
Peed, Lindsey C. ;
Briggs, Erika R. ;
Steger, David J. ;
Ma, Tao ;
Sims, Carrie A. ;
Baur, Joseph A. ;
Pei, Liming ;
Won, Kyoung-Jae ;
Seale, Patrick ;
Gerhart-Hines, Zachary ;
Lazar, Mitchell A. .
NATURE, 2017, 546 (7659) :544-+
[15]   Identifying ChIP-seq enrichment using MACS [J].
Feng, Jianxing ;
Liu, Tao ;
Qin, Bo ;
Zhang, Yong ;
Liu, Xiaole Shirley .
NATURE PROTOCOLS, 2012, 7 (09) :1728-1740
[16]   The SMRT and N-CoR corepressors are activating cofactors for histone deacetylase 3 [J].
Guenther, MG ;
Barak, O ;
Lazar, MA .
MOLECULAR AND CELLULAR BIOLOGY, 2001, 21 (18) :6091-6101
[17]  
Hainer Sarah J, 2019, Curr Protoc Mol Biol, V126, pe85, DOI 10.1002/cpmb.85
[18]   Efficient ends-out gene targeting in Drosophila [J].
Huang, Juan ;
Zhou, Wenke ;
Watson, Annie M. ;
Jan, Yuh-Nung ;
Hong, Yang .
GENETICS, 2008, 180 (01) :703-707
[19]   CUT&Tag for efficient epigenomic profiling of small samples and single cells [J].
Kaya-Okur, Hatice S. ;
Wu, Steven J. ;
Codomo, Christine A. ;
Pledgers, Erica S. ;
Bryson, Terri D. ;
Henikoff, Jorja G. ;
Ahmad, Kami ;
Henikoff, Steven .
NATURE COMMUNICATIONS, 2019, 10 (1)
[20]   Rev-erbα dynamically modulates chromatin looping to control circadian gene transcription [J].
Kim, Yong Hoon ;
Marhon, Sajid A. ;
Zhang, Yuxiang ;
Steger, David J. ;
Won, Kyoung-Jae ;
Lazar, Mitchell A. .
SCIENCE, 2018, 359 (6381) :1274-+