A structure-based cellular model reveals power-law rheology and stiffening of living cells under shear stress

被引:2
作者
Liang, Dong [1 ]
Hang, Jiu-Tao [1 ]
Xu, Guang-Kui [1 ]
机构
[1] Xi An Jiao Tong Univ, Sch Aerosp Engn, Dept Engn Mech, Lab Multiscale Mech & Med Sci,State Key Lab Streng, Xian 710049, Peoples R China
基金
中国国家自然科学基金;
关键词
Shear rheology; Power-law; Stress stiffening; High-frequency responses; Cell mechanics; MECHANICAL-PROPERTIES; CYTOSKELETON; FIBROBLASTS; FILAMENTS; DYNAMICS; BEHAVIOR;
D O I
10.1007/s10409-023-23129-x
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Shear stress plays a crucial role in many physiological processes, such as atherosclerosis, angiogenesis, and metastasis. However, how cells respond to static and dynamical shear stresses remains poorly understood. Here, we propose a structure-based cellular model, consisting of cell membrane, cytoplasm, and cytoskeleton, to explore the shear rheology of cells. By simulating the mechanical responses of a single cell under shear stress, we find that this model can reproduce both the universal power-law rheology at small deformations and stress stiffening at large deformations. Besides, the loss moduli of cells at high frequencies exhibit a stronger frequency dependence than the storage moduli. Moreover, we present two master relations: one is between the power-law exponent and cell stiffness; the other is between cell stiffness and external forces. Our results are in broad agreement with experiments. The self-similar hierarchical theory offers a physical explanation of the power-law responses of cells under shear stress. In addition, we consider the geometrical nonlinearity of single filaments to account for the stress stiffening of cells. The present model can be used to examine the effects of shear flow on living cells in physiological environments.
引用
收藏
页数:8
相关论文
共 45 条
[1]   Power laws in microrheology experiments on living cells:: Comparative analysis and modeling [J].
Balland, Martial ;
Desprat, Nicolas ;
Icard, Delphine ;
Fereol, Sophie ;
Asnacios, Atef ;
Browaeys, Julien ;
Henon, Sylvie ;
Gallet, Francois .
PHYSICAL REVIEW E, 2006, 74 (02)
[2]   Modeling semiflexible polymer networks [J].
Broedersz, C. P. ;
MacKintosh, F. C. .
REVIEWS OF MODERN PHYSICS, 2014, 86 (03) :995-1036
[3]   Fast and slow dynamics of the cytoskeleton [J].
Deng, Linhong ;
Trepat, Xavier ;
Butler, James P. ;
Millet, Emil ;
Morgan, Kathleen G. ;
Weitz, David A. ;
Fredberg, Jeffrey J. .
NATURE MATERIALS, 2006, 5 (08) :636-640
[4]   Creep function of a single living cell [J].
Desprat, N ;
Richert, A ;
Simeon, J ;
Asnacios, A .
BIOPHYSICAL JOURNAL, 2005, 88 (03) :2224-2233
[5]   The effect of remodelling and contractility of the actin cytoskeleton on the shear resistance of single cells: a computational and experimental investigation [J].
Dowling, Enda P. ;
Ronan, William ;
Ofek, Gidon ;
Deshpande, Vikram S. ;
McMeeking, Robert M. ;
Athanasiou, Kyriacos A. ;
McGarry, J. Patrick .
JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2012, 9 (77) :3469-3479
[6]   NEW MATERIAL CONCEPT FOR RED-CELL MEMBRANE [J].
EVANS, EA .
BIOPHYSICAL JOURNAL, 1973, 13 (09) :926-940
[7]   Time scale and other invariants of integrative mechanical behavior in living cells [J].
Fabry, B ;
Maksym, GN ;
Butler, JP ;
Glogauer, M ;
Navajas, D ;
Taback, NA ;
Millet, EJ ;
Fredberg, JJ .
PHYSICAL REVIEW E, 2003, 68 (04)
[8]   Scaling the microrheology of living cells [J].
Fabry, B ;
Maksym, GN ;
Butler, JP ;
Glogauer, M ;
Navajas, D ;
Fredberg, JJ .
PHYSICAL REVIEW LETTERS, 2001, 87 (14) :148102/1-148102/4
[9]   A master relation defines the nonlinear viscoelasticity of single fibroblasts [J].
Fernández, P ;
Pullarkat, PA ;
Ott, A .
BIOPHYSICAL JOURNAL, 2006, 90 (10) :3796-3805
[10]   Shear rheology of a cell monolayer [J].
Fernandez, Pablo ;
Heymann, Lutz ;
Ott, Albrecht ;
Aksel, Nuri ;
Pullarkat, Pramod A. .
NEW JOURNAL OF PHYSICS, 2007, 9