The hypocoercivity index for the short time behavior of linear time-invariant ODE systems

被引:3
|
作者
Achleitner, Franz [1 ]
Arnold, Anton [1 ]
Carlen, Eric A. [2 ]
机构
[1] TU Wien, Inst Anal & Sci Comp, Wiedner Hauptstr 8-10, A-1040 Vienna, Austria
[2] Rutgers State Univ, Dept Math, 110 Frelinghuysen Rd, Piscataway, NJ 08854 USA
基金
奥地利科学基金会;
关键词
Semi-dissipative ODE systems; Hypocoercivity (index); EQUATIONS; NORMS;
D O I
10.1016/j.jde.2023.06.027
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the class of conservative-dissipative ODE systems, which is a subclass of Lyapunov stable, linear time-invariant ODE systems. We characterize asymptotically stable, conservative-dissipative ODE systems via the hypocoercivity (theory) of their system matrices. Our main result is a concise characterization of the hypocoercivity index (an algebraic structural property of matrices with positive semi-definite Hermitian part introduced in Achleitner, Arnold, and Carlen (2018)) in terms of the short time behavior of the norm of the matrix exponential for the associated conservative-dissipative ODE system. & COPY; 2023 Elsevier Inc. All rights reserved.
引用
收藏
页码:83 / 115
页数:33
相关论文
共 50 条