Non-iterative stress projection method for anisotropic hardening

被引:4
作者
Yoon, Seongyong [1 ,2 ]
Barlat, Frederic [1 ]
机构
[1] Pohang Univ Sci & Technol, Grad Inst Ferrous & Energy Mat Technol, Pohang 37673, South Korea
[2] Max Planck Inst Eisenforsch GmbH, Max Planck Str 1, D-40237 Dusseldorf, Germany
关键词
Continuum plasticity; Computational plasticity; Anisotropic hardening; Finite element analysis; Sheet metal forming; ALUMINUM-ALLOY SHEETS; YIELD FUNCTION; PLASTICITY; MODEL; CRITERION; PRESSURE;
D O I
10.1016/j.mechmat.2023.104683
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, a fully explicit non-iterative stress projection method for the instant stress integration of advanced plasticity models that account for the history-dependent deformation is proposed. In this non-iterative stress projection method, the stress increment is directly determined based on the elastoplastic constitutive law. Generalized formulations of the elastoplastic tangent moduli for anisotropic hardening models are discussed considering the morphological yield surface changes in the context. Precise integrations of the stress tensor, effective plastic strain, and other state variables are accomplished for kinematic- and distortional hardening models. The implemented plasticity hardening models are validated through a series of non-proportional loadings and a sheet metal forming simulation to check the fidelity, numerical robustness, and computational efficiency of the suggested non-iterative stress projection method. Consequently, the computation cost for a largescale metal forming simulation is reduced up to 50%.
引用
收藏
页数:22
相关论文
共 67 条
[1]  
Aretz H, 2007, AIP CONF PROC, V907, P151, DOI 10.1063/1.2729503
[2]  
Baltov A., 1965, ACTA MECH, V1, P81, DOI DOI 10.1007/BF01174305
[3]   Plane stress yield function for aluminum alloy sheets - part 1: theory [J].
Barlat, F ;
Brem, JC ;
Yoon, JW ;
Chung, K ;
Dick, RE ;
Lege, DJ ;
Pourgoghrat, F ;
Choi, SH ;
Chu, E .
INTERNATIONAL JOURNAL OF PLASTICITY, 2003, 19 (09) :1297-1319
[4]   Linear transfomation-based anisotropic yield functions [J].
Barlat, F ;
Aretz, H ;
Yoon, JW ;
Karabin, ME ;
Brem, JC ;
Dick, RE .
INTERNATIONAL JOURNAL OF PLASTICITY, 2005, 21 (05) :1009-1039
[5]   Enhancements of homogenous anisotropic hardening model and application to mild and dual-phase steels [J].
Barlat, F. ;
Vincze, G. ;
Gracio, J. J. ;
Lee, M. -G. ;
Rauch, E. F. ;
Tome, C. N. .
INTERNATIONAL JOURNAL OF PLASTICITY, 2014, 58 :201-218
[6]   Distortional plasticity framework with application to advanced high strength steel [J].
Barlat, Frederic ;
Yoon, Seong-Yong ;
Lee, Shin-Yeong ;
Wi, Min-Su ;
Kim, Jin-Hwan .
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2020, 202 :947-962
[7]   Extension of homogeneous anisotropic hardening model to cross-loading with latent effects [J].
Barlat, Frederic ;
Ha, Jinjin ;
Gracio, Jose J. ;
Lee, Myoung-Gyu ;
Rauch, Edgar F. ;
Vincze, Gabriela .
INTERNATIONAL JOURNAL OF PLASTICITY, 2013, 46 :130-142
[8]   An alternative to kinematic hardening in classical plasticity [J].
Barlat, Frederic ;
Gracio, Jose J. ;
Lee, Myoung-Gyu ;
Rauch, Edgar F. ;
Vincze, Gabriela .
INTERNATIONAL JOURNAL OF PLASTICITY, 2011, 27 (09) :1309-1327
[9]   Stress integration method for a nonlinear kinematic/isotropic hardening model and its characterization based on polycrystal plasticity [J].
Cardoso, Rui P. R. ;
Yoon, Jeong Whan .
INTERNATIONAL JOURNAL OF PLASTICITY, 2009, 25 (09) :1684-1710
[10]   Orthotropic yield criterion for hexagonal closed packed metals [J].
Cazacu, O ;
Plunkett, B ;
Barlat, F .
INTERNATIONAL JOURNAL OF PLASTICITY, 2006, 22 (07) :1171-1194