Unique (100) Surface Configuration Enables Promising Oxygen Reduction Performance for Pt3Co Nanodendrite Catalysts

被引:9
作者
Huang, Tzu-Hsi [1 ,2 ]
Jiang, Yongjun [1 ]
Peng, Yu-Hsin [2 ]
Tseng, Yao-Tien [2 ]
Yan, Che [3 ]
Chien, Po-Cheng [4 ]
Wang, Kung-Yu [2 ]
Chen, Tsan-Yao [3 ,5 ]
Wang, Jeng-Han [4 ]
Wang, Kuan-Wen [2 ]
Dai, Sheng [1 ]
机构
[1] East China Univ Sci & Technol, Inst Fine Chem, Key Lab Adv Mat & Feringa Nobel Prize Scientist Jo, Sch Chem & Mol Engn, Shanghai 200237, Peoples R China
[2] Natl Cent Univ, Inst Mat Sci & Engn, Taoyuan 320, Taiwan
[3] Natl Tsing Hua Univ, Dept Engn & Syst Sci, Hsinchu 30013, Taiwan
[4] Natl Taiwan Normal Univ, Dept Chem, Taipei 116, Taiwan
[5] Natl Cheng Kung Univ, Hierarch Green Energy Mat Hi GEM Res Ctr, Tainan 70101, Taiwan
关键词
PtCo; nanodendrite; oxygen reduction reaction; in situ X-ray absorption spectroscopy; (100) surface; oxophilicity; density functional theory; ANISOTROPIC GROWTH; ELECTRON-GAS; ELECTROCATALYSTS; NANOPARTICLES; SEGREGATION; PLATINUM; TRANSITION; DEPENDENCE; MECHANISM; OXIDATION;
D O I
10.1021/acsami.3c00968
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Selective exposure of active surfaces of Pt-based electrocatalysts has been demonstrated as an effective strategy to improve Pt utilization and promote oxygen reduction reaction (ORR) activity in fuel cell application. However, challenges remain in stabilizing those active surface structures, which often suffer undesirable degradation and poor durability along with surface passivation, metal dissolution, and agglomeration of Pt-based electrocatalysts. To overcome the aforementioned obstacles, we here demonstrate the unique (100) surface configuration enabling active and stable ORR performance for bimetallic Pt3Co nano-dendrite structures. Using elaborate microscopy and spectroscopy characterization, it is revealed that the Co atoms are preferentially segregated and oxidized at the Pt3Co(100) surface. In situ X-ray absorption spectroscopy (XAS) shows that such (100) surface configuration prevents the oxygen chemisorption and oxide formation on active Pt during the ORR process. Thus, the Pt3Co nanodendrite catalyst shows not only a high ORR mass activity of 730 mA/mg at 0.9 V vs RHE, which is 6.6-fold higher than that of the Pt/C, but also impressively high stability with 98% current retention after the acceleration degradation test in acid media for 5000 cycles, far exceeding the Pt or Pt3Co nanoparticles. Density functional theory (DFT) calculation also confirms the lateral and structural effects from the segregated Co and oxides on the Pt3Co(100) surface in reducing the catalyst oxophilicity and the free energy for the formation of an OH intermediate in the ORR.
引用
收藏
页码:18217 / 18228
页数:12
相关论文
共 58 条
[1]  
Alloyeau D, 2009, NAT MATER, V8, P940, DOI [10.1038/nmat2574, 10.1038/NMAT2574]
[2]   On the quality and stability of preferentially oriented (100) Pt nanoparticles: An electrochemical insight [J].
Aran-Ais, Rosa M. ;
Solla-Gullon, Jose ;
Herrero, Enrique ;
Feliu, Juan M. .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2018, 808 :433-438
[3]   Elemental Anisotropic Growth and Atomic-Scale Structure of Shape-Controlled Octahedral Pt-Ni-Co Alloy Nanocatalysts [J].
Aran-Ais, Rosa M. ;
Dionigi, Fabio ;
Merzdorf, Thomas ;
Gocyla, Martin ;
Heggen, Marc ;
Dunin-Borkowski, Rafal E. ;
Gliech, Manuel ;
Solla-Gullon, Jose ;
Herrero, Enrique ;
Feliu, Juan M. ;
Strasser, Peter .
NANO LETTERS, 2015, 15 (11) :7473-7480
[4]   Investigation into the Competitive and Site-Specific Nature of Anion Adsorption on Pt Using In Situ X-ray Absorption Spectroscopy [J].
Arruda, Thomas M. ;
Shyam, Badri ;
Ziegelbauer, Joseph M. ;
Mukerjee, Sanjeev ;
Ramaker, David E. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2008, 112 (46) :18087-18097
[5]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[6]   Differential Surface Elemental Distribution Leads to Significantly Enhanced Stability of PtNi-Based ORR Catalysts [J].
Cao, Liang ;
Zhao, Zipeng ;
Liu, Zeyan ;
Gao, Wenpei ;
Dai, Sheng ;
Gha, Joonho ;
Xue, Wang ;
Sun, Hongtao ;
Duan, Xiangfeng ;
Pan, Xiaoqing ;
Mueller, Tim ;
Huang, Yu .
MATTER, 2019, 1 (06) :1567-1580
[7]   GROUND-STATE OF THE ELECTRON-GAS BY A STOCHASTIC METHOD [J].
CEPERLEY, DM ;
ALDER, BJ .
PHYSICAL REVIEW LETTERS, 1980, 45 (07) :566-569
[8]   Highly Crystalline Multimetallic Nanoframes with Three-Dimensional Electrocatalytic Surfaces [J].
Chen, Chen ;
Kang, Yijin ;
Huo, Ziyang ;
Zhu, Zhongwei ;
Huang, Wenyu ;
Xin, Huolin L. ;
Snyder, Joshua D. ;
Li, Dongguo ;
Herron, Jeffrey A. ;
Mavrikakis, Manos ;
Chi, Miaofang ;
More, Karren L. ;
Li, Yadong ;
Markovic, Nenad M. ;
Somorjai, Gabor A. ;
Yang, Peidong ;
Stamenkovic, Vojislav R. .
SCIENCE, 2014, 343 (6177) :1339-1343
[9]  
Chen L., 2021, CATAL LETT, V151, P212, DOI [10.1007/s10562-020-03286-w, DOI 10.1007/S10562-020-03286-W]
[10]   Role of surface defect sites: from Pt model surfaces to shape-controlled nanoparticles [J].
Chen, Qing-Song ;
Vidal-Iglesias, Francisco J. ;
Solla-Gullon, Jose ;
Sun, Shi-Gang ;
Feliu, Juan M. .
CHEMICAL SCIENCE, 2012, 3 (01) :136-147