Computational Methods for Single-cell Multi-omics Integration and Alignment

被引:30
作者
Stanojevic, Stefan [1 ]
Li, Yijun [2 ]
Ristivojevic, Aleksandar [3 ]
Garmire, Lana X. [1 ]
机构
[1] Univ Michigan, Dept Computat Med & Bioinformat, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Dept Biostat, Ann Arbor, MI 48109 USA
[3] Amherst Coll, Amherst, MA 01002 USA
关键词
Single-cell; Multi-omics; Machine learning; Unsupervised learning; Integration; GENOME-WIDE EXPRESSION; GENE-EXPRESSION; SEQ; CHALLENGES; MODEL;
D O I
10.1016/j.gpb.2022.11.013
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Recently developed technologies to generate single-cell genomic data have made a revolutionary impact in the field of biology. Multi-omics assays offer even greater opportunities to understand cellular states and biological processes. The problem of integrating different omics data with very different dimensionality and statistical properties remains, however, quite challenging. A growing body of computational tools is being developed for this task, leveraging ideas ranging from machine translation to the theory of networks, and represents another frontier on the interface of biology and data science. Our goal in this review is to provide a comprehensive, up-to-date survey of computational techniques for the integration of single-cell multi-omics data, while making the concepts behind each algorithm approachable to a non-expert audience.
引用
收藏
页码:836 / 849
页数:14
相关论文
共 85 条
[1]   Computational strategies for single-cell multi-omics integration [J].
Adossa, Nigatu ;
Khan, Sofia ;
Rytkonen, Kalle T. ;
Elo, Laura L. .
COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2021, 19 :2588-2596
[2]  
Amodio M, 2018, Arxiv, DOI [arXiv:1803.00385, 10.48550/arxiv.1803.00385, DOI 10.48550/ARXIV.1803.00385]
[3]   Computational principles and challenges in single-cell data integration [J].
Argelaguet, Ricard ;
Cuomo, Anna S. E. ;
Stegle, Oliver ;
Marioni, John C. .
NATURE BIOTECHNOLOGY, 2021, 39 (10) :1202-1215
[4]   MOFA plus : a statistical framework for comprehensive integration of multi-modal single-cell data [J].
Argelaguet, Ricard ;
Arnol, Damien ;
Bredikhin, Danila ;
Deloro, Yonatan ;
Velten, Britta ;
Marioni, John C. ;
Stegle, Oliver .
GENOME BIOLOGY, 2020, 21 (01)
[5]   Multi-Omics Factor Analysis-a framework for unsupervised integration of multi-omics data sets [J].
Argelaguet, Ricard ;
Velten, Britta ;
Arnol, Damien ;
Dietrich, Sascha ;
Zenz, Thorsten ;
Marioni, John C. ;
Buettner, Florian ;
Huber, Wolfgang ;
Stegle, Oliver .
MOLECULAR SYSTEMS BIOLOGY, 2018, 14 (06)
[6]   Computational challenges and opportunities in spatially resolved transcriptomic data analysis [J].
Atta, Lyla ;
Fan, Jean .
NATURE COMMUNICATIONS, 2021, 12 (01)
[7]   Laplacian eigenmaps for dimensionality reduction and data representation [J].
Belkin, M ;
Niyogi, P .
NEURAL COMPUTATION, 2003, 15 (06) :1373-1396
[8]   Single-cell multiomics sequencing and analyses of human colorectal cancer [J].
Bian, Shuhui ;
Hou, Yu ;
Zhou, Xin ;
Li, Xianlong ;
Yong, Jun ;
Wang, Yicheng ;
Wang, Wendong ;
Yan, Jia ;
Hu, Boqiang ;
Guo, Hongshan ;
Wang, Jilian ;
Gao, Shuai ;
Mao, Yunuo ;
Dong, Ji ;
Zhu, Ping ;
Xiu, Dianrong ;
Yan, Liying ;
Wen, Lu ;
Qiao, Jie ;
Tang, Fuchou ;
Fu, Wei .
SCIENCE, 2018, 362 (6418) :1060-+
[9]   A CORRELATED TOPIC MODEL OF SCIENCE [J].
Blei, David M. ;
Lafferty, John D. .
ANNALS OF APPLIED STATISTICS, 2007, 1 (01) :17-35
[10]   clonealign: statistical integration of independent single-cell RNA and DNA sequencing data from human cancers [J].
Campbell, Kieran R. ;
Steif, Adi ;
Laks, Emma ;
Zahn, Hans ;
Lai, Daniel ;
McPherson, Andrew ;
Farahani, Hossein ;
Kabeer, Farhia ;
O'Flanagan, Ciara ;
Biele, Justina ;
Brimhall, Jazmine ;
Wang, Beixi ;
Walters, Pascale ;
Bouchard-Cote, Alexandre ;
Aparicio, Samuel ;
Shah, Sohrab P. .
GENOME BIOLOGY, 2019, 20 (1)