Global land-use and sustainability implications of enhanced bioenergy import of China

被引:9
作者
Wu, Yazhen [1 ,2 ]
Deppermann, Andre [2 ]
Havlik, Petr [2 ]
Frank, Stefan [2 ]
Ren, Ming [1 ,2 ]
Zhao, Hao [3 ,4 ,5 ]
Ma, Lin [4 ]
Fang, Chen [1 ]
Chen, Qi [1 ]
Dai, Hancheng [1 ,6 ]
机构
[1] Peking Univ, Coll Environm Sci & Engn, Beijing 100871, Peoples R China
[2] Int Inst Appl Syst Anal IIASA, Laxenburg, Austria
[3] Zhejiang Univ, Coll Environm & Resource Sci, Hangzhou 310058, Peoples R China
[4] Chinese Acad Sci, Inst Genet & Dev Biol, Ctr Agr Resources Res, Key Lab Agr Water Resources,Hebei Key Lab Soil Ec, Shijiazhuang, Peoples R China
[5] Univ Chinese Acad Sci, Beijing, Peoples R China
[6] Peking Univ, Inst Global Hlth & Dev, Beijing 100871, Peoples R China
基金
中国国家自然科学基金;
关键词
Bioenergy; 1; 5?C; International trade; Land -use change; GLOBIOM; TRADE; IMPACTS; BIOMASS; FUTURE; ENERGY; SCENARIOS; EMISSIONS; TARGETS; SYSTEM;
D O I
10.1016/j.apenergy.2023.120769
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Most ambitious climate change mitigation pathways indicate multifold bioenergy expansion to support the en-ergy transition, which may trigger increased biomass imports from major bioenergy-consuming regions. How-ever, the potential global land-use change and sustainability trade-offs alongside the bioenergy trade remain poorly understood. Here, we apply the Global Biosphere Management Model (GLOBIOM) to investigate and compare the effects of different increasing bioenergy import strategies in line with the 1.5 degrees C-compatible bio-energy demand in China, which is projected to represent 30% of global bioenergy consumption by the middle of the century. The results show that sourcing additional bioenergy from different world regions could pose het-erogeneous impacts on the local and global land systems, with implications on food security, greenhouse gas emissions, and water and fertilizer demand. In the worst cases under strict trade settings, relying on biomass import may induce up to 25% of unmanaged forests converted to managed ones in the supplying regions, while in an open trade environment, increasing bioenergy imports would drastically change the trade flows of staple agricultural or forestry products, which would further bring secondary land-use changes in other world regions. Nevertheless, an economically optimized biomass import portfolio for China has the potential to reduce global overall sustainability trade-offs with food security and emission abatement. However, these benefits vary with indicator and time and are conditional on stricter land-use regulations. Our findings thus shed new light on the design of bioenergy trade strategies and the associated land-use regulations in individual countries in the era of deep decarbonization.
引用
收藏
页数:17
相关论文
共 86 条
[11]  
Bradley D, 2013, IEA BIOENERGY TASK, P40
[12]   Quantifying the global cropland footprint of the European Union's non-food bioeconomy [J].
Bruckner, Martin ;
Hayha, Tiina ;
Giljum, Stefan ;
Maus, Victor ;
Fischer, Guenther ;
Tramberend, Sylvia ;
Boerner, Jan .
ENVIRONMENTAL RESEARCH LETTERS, 2019, 14 (04)
[13]   Reconciling regional nitrogen boundaries with global food security [J].
Chang, Jinfeng ;
Havlik, Petr ;
Leclere, David ;
de Vries, Wim ;
Valin, Hugo ;
Deppermann, Andre ;
Hasegawa, Tomoko ;
Obersteiner, Michael .
NATURE FOOD, 2021, 2 (09) :700-+
[14]   Implications of climate change mitigation strategies on international bioenergy trade [J].
Daioglou, Vassilis ;
Muratori, Matteo ;
Lamers, Patrick ;
Fujimori, Shinichiro ;
Kitous, Alban ;
Koberle, Alexandre C. ;
Bauer, Nico ;
Junginger, Martin ;
Kato, Etsushi ;
Leblanc, Florian ;
Mima, Silvana ;
Wise, Marshal ;
van Vuuren, Detlef P. .
CLIMATIC CHANGE, 2020, 163 (03) :1639-1658
[15]   The market impacts of shortening feed supply chains in Europe [J].
Deppermann, Andre ;
Havlik, Petr ;
Valin, Hugo ;
Boere, Esther ;
Herrero, Mario ;
Vervoort, Joost ;
Mathijs, Erik .
FOOD SECURITY, 2018, 10 (06) :1401-1410
[16]   Land-use change to bioenergy production in Europe: implications for the greenhouse gas balance and soil carbon [J].
Don, Axel ;
Osborne, Bruce ;
Hastings, Astley ;
Skiba, Ute ;
Carter, Mette S. ;
Drewer, Julia ;
Flessa, Heinz ;
Freibauer, Annette ;
Hyvonen, Niina ;
Jones, Mike B. ;
Lanigan, Gary J. ;
Mander, Uelo ;
Monti, Andrea ;
Djomo, Sylvestre Njakou ;
Valentine, John ;
Walter, Katja ;
Zegada-Lizarazu, Walter ;
Zenone, Terenzio .
GLOBAL CHANGE BIOLOGY BIOENERGY, 2012, 4 (04) :372-391
[17]   Assessing China's efforts to pursue the 1.5°C warming limit [J].
Duan, Hongbo ;
Zhou, Sheng ;
Jiang, Kejun ;
Bertram, Christoph ;
Harmsen, Mathijs ;
Kriegler, Elmar ;
van Vuuren, Detlef P. ;
Wang, Shouyang ;
Fujimori, Shinichiro ;
Tavoni, Massimo ;
Ming, Xi ;
Keramidas, Kimon ;
Iyer, Gokul ;
Edmonds, James .
SCIENCE, 2021, 372 (6540) :378-+
[18]   The economics of bioenergy with carbon capture and storage (BECCS) deployment in a 1.5 °C or 2 °C world [J].
Fajardy, Mathilde ;
Morris, Jennifer ;
Gurgel, Angelo ;
Herzog, Howard ;
Mac Dowell, Niall ;
Paltsev, Sergey .
GLOBAL ENVIRONMENTAL CHANGE-HUMAN AND POLICY DIMENSIONS, 2021, 68
[19]  
[樊静丽 Fan Jingli], 2021, [热力发电, Thermal Power Generation], V50, P7
[20]  
Food and Agriculture Organization of the United Nations, 2022, FAOSTAT database.