Prediction of bioactivities of microsomal prostaglandin E2 synthase-1 inhibitors by machine learning algorithms

被引:1
|
作者
Tian, Yujia [1 ]
Yang, Zhenwu [1 ]
Wang, Hongzhao [1 ]
Yan, Aixia [1 ,2 ]
机构
[1] Beijing Univ Chem Technol, Dept Pharmaceut Engn, State Key Lab Chem Resource Engn, Beijing, Peoples R China
[2] Beijing Univ Chem Technol, Dept Pharmaceut Engn, State Key Lab Chem Resource Engn, POB 53, 15 BeiSanHuan East Rd, Beijing 100029, Peoples R China
关键词
applicability domain (AD); machine learning (ML); microsomal prostaglandin E-2 synthase-1 (mPGES-1) inhibitor; quantitative structure-activity relationship (QSAR); self-attention recurrent neural networks (RNN); APPLICABILITY DOMAIN; QSAR; IDENTIFICATION; CHALLENGES; REGRESSION; DISCOVERY; DESIGN; TARGET;
D O I
10.1111/cbdd.14214
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
There is a strong interest in the development of microsomal prostaglandin E2 synthase-1 (mPGES-1) inhibitors of their potential to safely and effectively treat inflammation. Herein, 70 QSAR models were built on the dataset (735 mPGES-1 inhibitors) characterized with RDKit descriptors by multiple linear regression (MLR), support vector machine (SVM), random forest (RF), deep neural networks (DNN), and eXtreme Gradient Boosting (XGBoost). The other three regression models on the dataset are represented by SMILES using self-attention recurrent neural networks (RNN) and Graph Convolutional Networks (GCN). For the best model (Model C2), which was developed by SVM with RDKit descriptors, the coefficient of determination (R-2) of 0.861 and root mean squared error (RMSE) of 0.235 were achieved for the test set. Additionally, R-2 of 0.692 and RMSE of 0.383 were obtained on the external test set. We investigated the applicability domain (AD) of Model C2 with the rivality index (RI), the prediction of Model C2 on 78.92% of molecules in the test set, and 78.33% of molecules in the external test set were reliable. After dissecting the RDKit descriptors of Model C2, we found important physicochemical properties of highly active mPGES-1 inhibitors. Besides, by analyzing the attention weight of each atom of each inhibitor from the attention layer, we found that the benzamide group and the trifluoromethyl cyclohexane group are favorable substructures for mPGES-1 inhibitors.
引用
收藏
页码:1307 / 1321
页数:15
相关论文
共 50 条
  • [21] Synthesis and SAR study of imidazoquinolines as a novel structural class of microsomal prostaglandin E2 synthase-1 inhibitors
    Shiro, Tomoya
    Takahashi, Hirotada
    Kakiguchi, Keisuke
    Inoue, Yoshifumi
    Masuda, Keiki
    Nagata, Hidetaka
    Tobe, Masanori
    BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, 2012, 22 (01) : 285 - 288
  • [22] Microsomal prostaglandin E2 synthase-1 in breast cancer:: A possible target for chemoprevention
    Morimiya, A
    Mehrotra, S
    Agarwal, B
    Konger, R
    Badve, S
    LABORATORY INVESTIGATION, 2005, 85 : 45A - 45A
  • [23] Role of microsomal prostaglandin E synthase-1 (mPGES-1)-derived prostaglandin E2 in colon carcinogenesis
    Sasaki, Yuka
    Nakatani, Yoshihito
    Hara, Shuntaro
    PROSTAGLANDINS & OTHER LIPID MEDIATORS, 2015, 121 : 42 - 45
  • [24] HTRF-based assay for microsomal prostaglandin E2 synthase-1 activity
    Goedken, Eric R.
    Gagnon, Andrew I.
    Overmeyer, Gary T.
    Liu, Junjian
    Petrillo, Richard A.
    Burchat, Andrew F.
    Tomlinson, Medha J.
    JOURNAL OF BIOMOLECULAR SCREENING, 2008, 13 (07) : 619 - 625
  • [25] Microsomal prostaglandin E2 synthase-1 in breast cancer:: A possible target for chemoprevention
    Morimiya, A
    Mehrotra, S
    Agarwal, B
    Konger, R
    Badve, S
    MODERN PATHOLOGY, 2005, 18 : 45A - 45A
  • [26] Latest progress in the development of cyclooxygenase-2 pathway inhibitors targeting microsomal prostaglandin E2 synthase-1
    LaBorde, Krista
    Lu, Renzhong
    Ruan, Ke-He
    FUTURE MEDICINAL CHEMISTRY, 2022, 14 (06) : 385 - 388
  • [27] Discovery and Characterization of 2-Acylaminoimidazole Microsomal Prostaglandin E Synthase-1 Inhibitors
    Schiffler, Matthew A.
    Antonysamy, Stephen
    Bhattachar, Shobha N.
    Campanale, Kristina M.
    Chandrasekhar, Srinivasan
    Condon, Bradley
    Desai, Prashant V.
    Fisher, Matthew J.
    Groshong, Christopher
    Harvey, Anita
    Hickey, Michael J.
    Hughes, Norman E.
    Jones, Scott A.
    Kim, Euibong J.
    Kuklish, Steven L.
    Luz, John G.
    Norman, Bryan H.
    Rathmell, Richard E.
    Rizzo, John R.
    Seng, Thomas W.
    Thibodeaux, Stefan J.
    Woods, Timothy A.
    York, Jeremy S.
    Yu, Xiao-Peng
    JOURNAL OF MEDICINAL CHEMISTRY, 2016, 59 (01) : 194 - 205
  • [28] Discovery of benzo[g]indol-3-carboxylates as potent inhibitors of microsomal prostaglandin E2 synthase-1
    Koeberle, Andreas
    Haberl, Eva-Maria
    Rossi, Antonietta
    Pergola, Carlo
    Dehm, Friederike
    Northoff, Hinnak
    Troschuetz, Reinhard
    Sautebin, Lidia
    Werz, Oliver
    BIOORGANIC & MEDICINAL CHEMISTRY, 2009, 17 (23) : 7924 - 7932
  • [29] Pharmacophore Modeling and Virtual Screening for Novel Acidic Inhibitors of Microsomal Prostaglandin E2 Synthase-1 (mPGES-1)
    Waltenberger, Birgit
    Wiechmann, Katja
    Bauer, Julia
    Markt, Patrick
    Noha, Stefan M.
    Wolber, Gerhard
    Rollinger, Judith M.
    Werz, Oliver
    Schuster, Daniela
    Stuppner, Hermann
    JOURNAL OF MEDICINAL CHEMISTRY, 2011, 54 (09) : 3163 - 3174
  • [30] Pirinixic Acid Derivatives as Novel Dual Inhibitors of Microsomal Prostaglandin E2 Synthase-1 and 5-Lipoxygenase
    Koeberle, Andreas
    Zettl, Heiko
    Greiner, Christine
    Wurglics, Mario
    Schubert-Zsilavecz, Manfred
    Werz, Oliver
    JOURNAL OF MEDICINAL CHEMISTRY, 2008, 51 (24) : 8068 - 8076