Potential Nanotechnology-Based Therapeutics to Prevent Cancer Progression through TME Cell-Driven Populations

被引:6
作者
Ali, Rafia [1 ,2 ]
Shao, Huimin [1 ]
Varamini, Pegah [1 ,2 ]
机构
[1] Univ Sydney, Fac Med & Hlth, Sch Pharm, Sydney, NSW 2006, Australia
[2] Univ Sydney, Univ Sydney Nano Inst, Sydney, NSW 2006, Australia
关键词
tumour microenvironment; nanoparticles; triple negative breast cancer; targeting; tumour progression; metastasis; therapeutic resistance; TUMOR MICROENVIRONMENT; STEM-CELLS; THERAPY; NANOPARTICLES; INFILTRATION; FIBROBLASTS; DELIVERY; DRUG; PHOTOIMMUNOTHERAPY; CHEMOTHERAPY;
D O I
10.3390/pharmaceutics15010112
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer with a high risk of metastasis and therapeutic resistance. These issues are closely linked to the tumour microenvironment (TME) surrounding the tumour tissue. The association between residing TME components with tumour progression, survival, and metastasis has been well elucidated. Focusing on cancer cells alone is no longer considered a viable approach to therapy; thus, there is a high demand for TME targeting. The benefit of using nanoparticles is their preferential tumour accumulation and their ability to target TME components. Several nano-based platforms have been investigated to mitigate microenvironment-induced angiogenesis, therapeutic resistance, and tumour progression. These have been achieved by targeting mesenchymal originating cells (e.g., cancer-associated fibroblasts, adipocytes, and stem cells), haematological cells (e.g., tumour-associated macrophages, dendritic cells, and myeloid-derived suppressor cells), and the extracellular matrix within the TME that displays functional and architectural support. This review highlights the importance of nanotechnology-based therapeutics as a promising approach to target the TME and improve treatment outcomes for TNBC patients, which can lead to enhanced survival and quality of life. The role of different nanotherapeutics has been explored in the established TME cell-driven populations.
引用
收藏
页数:15
相关论文
共 71 条
[1]   Novel targets for paclitaxel nano formulations: Hopes and hypes in triple negative breast cancer [J].
Bakrania, Anita K. ;
Variya, Bhavesh C. ;
Patel, Snehal S. .
PHARMACOLOGICAL RESEARCH, 2016, 111 :577-591
[2]   Inhibition of interferon-signalling halts cancer-associated fibroblast-dependent protection of breast cancer cells from chemotherapy [J].
Broad, Robyn, V ;
Jones, Stacey J. ;
Teske, Melina C. ;
Wastall, Laura M. ;
Hanby, Andrew M. ;
Thorne, James L. ;
Hughes, Thomas A. .
BRITISH JOURNAL OF CANCER, 2021, 124 (06) :1110-1120
[3]   Elucidating the fate of nanoparticles among key cell components of the tumor microenvironment for promoting cancer nanotechnology [J].
Bromma, Kyle ;
Bannister, Aaron ;
Kowalewski, Antonia ;
Cicon, Leah ;
Chithrani, Devika B. .
CANCER NANOTECHNOLOGY, 2020, 11 (01)
[4]   Efficiently restoring the tumoricidal immunity against resistant malignancies via an immune nanomodulator [J].
Chen, Chen ;
Li, Aning ;
Sun, Peng ;
Xu, Jiawen ;
Du, Wei ;
Zhang, Jing ;
Liu, Ying ;
Zhang, Rui ;
Zhang, Shengchang ;
Yang, Zhenmei ;
Tang, Chunwei ;
Jiang, Xinyi .
JOURNAL OF CONTROLLED RELEASE, 2020, 324 :574-585
[5]   Novel CD44 receptor targeting multifunctional "nano-eggs" based on double pH-sensitive nanoparticles for co-delivery of curcumin and paclitaxel to cancer cells and cancer stem cells [J].
Chen, Daquan ;
Wang, Guohua ;
Song, Weiguo ;
Zhang, Qiang .
JOURNAL OF NANOPARTICLE RESEARCH, 2015, 17 (10)
[6]   Analysis of Immune Signatures in Longitudinal Tumor Samples Yields Insight into Biomarkers of Response and Mechanisms of Resistance to Immune Checkpoint Blockade [J].
Chen, Pei-Ling ;
Roh, Whijae ;
Reuben, Alexandre ;
Cooper, Zachary A. ;
Spencer, Christine N. ;
Prieto, Peter A. ;
Miller, John P. ;
Bassett, Roland L. ;
Gopalakrishnan, Vancheswaran ;
Wani, Khalida ;
De Macedo, Mariana Petaccia ;
Austin-Breneman, Jacob L. ;
Jiang, Hong ;
Chang, Qing ;
Reddy, Sangeetha M. ;
Chen, Wei-Shen ;
Tetzlaff, Michael T. ;
Broaddus, Russell J. ;
Davies, Michael A. ;
Gershenwald, Jeffrey E. ;
Haydu, Lauren ;
Lazar, Alexander J. ;
Patel, Sapna P. ;
Hwu, Patrick ;
Hwu, Wen-Jen ;
Diab, Adi ;
Glitza, Isabella C. ;
Woodman, Scott E. ;
Vence, Luis M. ;
Wistuba, Ignacio I. ;
Amaria, Rodabe N. ;
Kwong, Lawrence N. ;
Prieto, Victor ;
Davis, R. Eric ;
Ma, Wencai ;
Overwijk, Willem W. ;
Sharpe, Arlene H. ;
Hu, Jianhua ;
Futreal, P. Andrew ;
Blando, Jorge ;
Sharma, Padmanee ;
Allison, James P. ;
Chin, Lynda ;
Wargo, Jennifer A. .
CANCER DISCOVERY, 2016, 6 (08) :827-837
[7]   A nanoparticle-incorporated STING activator enhances antitumor immunity in PD-L1-insensitive models of triple-negative breast cancer [J].
Cheng, Ning ;
Watkins-Schulz, Rebekah ;
Junkins, Robert D. ;
David, Clement N. ;
Johnson, Brandon M. ;
Montgomery, Stephanie A. ;
Peine, Kevin J. ;
Darr, David B. ;
Yuan, Hong ;
Mckinnon, Karen P. ;
Liu, Qi ;
Miao, Lei ;
Huang, Leaf ;
Bachelder, Eric M. ;
Ainslie, Kristy M. ;
Ting, Jenny P-Y .
JCI INSIGHT, 2018, 3 (22)
[8]   Redox Control of Multidrug Resistance and Its Possible Modulation by Antioxidants [J].
Cort, Aysegul ;
Ozben, Tomris ;
Saso, Luciano ;
De Luca, Chiara ;
Korkina, Liudmila .
OXIDATIVE MEDICINE AND CELLULAR LONGEVITY, 2016, 2016
[9]   Mammary Adipose Tissue Control of Breast Cancer Progression: Impact of Obesity and Diabetes [J].
D'Esposito, Vittoria ;
Ambrosio, Maria Rosaria ;
Giuliano, Mario ;
Cabaro, Serena ;
Miele, Claudia ;
Beguinot, Francesco ;
Formisano, Pietro .
FRONTIERS IN ONCOLOGY, 2020, 10
[10]   Adipose microenvironment promotes triple negative breast cancer cell invasiveness and dissemination by producing CCL5 [J].
D'Esposito, Vittoria ;
Liguoro, Domenico ;
Ambrosio, Maria Rosaria ;
Collina, Francesca ;
Cantile, Monica ;
Spinelli, Rosa ;
Raciti, Gregory Alexander ;
Miele, Claudia ;
Valentino, Rossella ;
Campiglia, Pietro ;
De laurentiis, Michelino ;
Di Bonito, Maurizio ;
Botti, Gerardo ;
Franco, Renato ;
Beguinot, Francesco ;
Formisano, Pietro .
ONCOTARGET, 2016, 7 (17) :24495-24509