Review of explainable machine learning for anaerobic digestion

被引:45
作者
Gupta, Rohit [1 ,2 ,3 ]
Zhang, Le [4 ]
Hou, Jiayi [5 ]
Zhang, Zhikai [6 ,7 ]
Liu, Hongtao [5 ]
You, Siming [1 ]
Ok, Yong Sik [8 ,9 ]
Li, Wangliang [6 ]
机构
[1] Univ Glasgow, James Watt Sch Engn, Glasgow City G12 8QQ, Scotland
[2] UCL, Nanoengn Syst Lab, UCL Mech Engn, London WC1E 7JE, England
[3] UCL, Wellcome EPSRC Ctr Intervent & Surg Sci, London W1W, England
[4] Shanghai Jiao Tong Univ, Sch Agr & Biol, Dept Resources & Environm, 800 Dongchuan Rd, Shanghai 200240, Peoples R China
[5] Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, Beijing 100101, Peoples R China
[6] Chinese Acad Sci, Inst Proc Engn, CAS Key Lab Green Proc & Engn, Beijing 100190, Peoples R China
[7] Hebei GEO Univ, Sch Water Resources & Environm, Shijiazhuang 050031, Hebei, Peoples R China
[8] Korea Univ, Korea Biochar Res Ctr, APRU Sustainable Waste Management Program, Seoul 02841, South Korea
[9] Korea Univ, Korea Biochar Res Ctr, Div Environm Sci & Ecol Engn, Seoul 02841, South Korea
基金
中国国家自然科学基金; 英国工程与自然科学研究理事会; 新加坡国家研究基金会;
关键词
Data -driven modelling; Sustainable waste management; Renewable energy; Bioenergy; Artificial intelligence; LIFE-CYCLE ASSESSMENT; BIOGAS PRODUCTION; VFA CONCENTRATION; FAULT-DETECTION; WASTE; OPTIMIZATION; MODEL; TEMPERATURE;
D O I
10.1016/j.biortech.2022.128468
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
Anaerobic digestion (AD) is a promising technology for recovering value-added resources from organic waste, thus achieving sustainable waste management. The performance of AD is dictated by a variety of factors including system design and operating conditions. This necessitates developing suitable modelling and optimi-zation tools to quantify its off-design performance, where the application of machine learning (ML) and soft computing approaches have received increasing attention. Here, we succinctly reviewed the latest progress in black-box ML approaches for AD modelling with a thrust on global and local model interpretability metrics (e.g., Shapley values, partial dependence analysis, permutation feature importance). Categorical applications of the ML and soft computing approaches such as what-if scenario analysis, fault detection in AD systems, long-term operation prediction, and integration of ML with life cycle assessment are discussed. Finally, the research gaps and scopes for future work are summarized.
引用
收藏
页数:10
相关论文
共 54 条
  • [1] A review of process parameters influence in solid-state anaerobic digestion: Focus on performance stability thresholds
    Ajayi-Banji, A.
    Rahman, S.
    [J]. RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2022, 167
  • [2] Meta-modeling based efficient global sensitivity analysis for wastewater treatment plants - An application to the BSM2 model
    Al, Resul
    Behera, Chitta Ranjan
    Zubov, Alexandr
    Gernaey, Krist, V
    Sin, Gurkan
    [J]. COMPUTERS & CHEMICAL ENGINEERING, 2019, 127 : 233 - 246
  • [3] Effluent composition prediction of a two-stage anaerobic digestion process: machine learning and stoichiometry techniques
    Alejo, Luz
    Atkinson, John
    Guzman-Fierro, Victor
    Roeckel, Marlene
    [J]. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2018, 25 (21) : 21149 - 21163
  • [4] Alloghani M., 2020, SUPERVISED UNSUPERVI, P3, DOI [10.1007/978-3-030-22475-2_1, DOI 10.1007/978-3-030-22475-2_1, 10.1007/978-3-030-22475-2]
  • [5] Alrawashdeh Khalideh Al-Bkoor, 2022, International Journal of Design and Nature and Ecodynamics, V17, P157, DOI 10.18280/ijdne.170201
  • [6] Arnau Notari M.R, 2022, U JAUME
  • [7] Biogas maximization using data-driven modelling with uncertainty analysis and genetic algorithm for municipal wastewater anaerobic digestion
    Asadi, Mohsen
    McPhedran, Kerry
    [J]. JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2021, 293 (293)
  • [8] A data-driven approach to simultaneous fault detection and diagnosis in data centers
    Asgari, Sahar
    Gupta, Rohit
    Puri, Ishwar K.
    Zheng, Rong
    [J]. APPLIED SOFT COMPUTING, 2021, 110
  • [9] A gray-box model for real-time transient temperature predictions in data centers
    Asgari, Sahar
    MirhoseiniNejad, SeyedMorteza
    Moazamigoodarzi, Hosein
    Gupta, Rohit
    Zheng, Rong
    Puri, Ishwar K.
    [J]. APPLIED THERMAL ENGINEERING, 2021, 185
  • [10] Hybrid surrogate model for online temperature and pressure predictions in data centers
    Asgari, Sahar
    Moazamigoodarzi, Hosein
    Tsai, Peiying Jennifer
    Pal, Souvik
    Zheng, Rong
    Badawy, Ghada
    Puri, Ishwar K.
    [J]. FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2021, 114 : 531 - 547