A discrete time evolution model for fracture networks

被引:2
|
作者
Domokos, Gabor [1 ,2 ]
Regos, Krisztina [1 ,2 ]
机构
[1] Budapest Univ Technol & Econ, Dept Morphol & Geometr Modeling, Muegyet Rkp 3,K220, H-1111 Budapest, Hungary
[2] Budapest Univ Technol & Econ, MTA BME Morphodynam Res Grp, Muegyet Rkp 3,K220, H-1111 Budapest, Hungary
关键词
Fracture network; Evolution model; Discrete dynamical system; Tessellation; PATTERNS;
D O I
10.1007/s10100-022-00838-w
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We examine geological crack patterns using the mean field theory of convex mosaics. We assign the pair n over bar *,v over bar *\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left({\overline{n } }<^>{*},{\overline{v } }<^>{*}\right)$$\end{document} of average corner degrees (Domokos et al. in A two-vertex theorem for normal tilings. Aequat Math , 2022) to each crack pattern and we define two local, random evolutionary steps R-0 and R-1, corresponding to secondary fracture and rearrangement of cracks, respectively. Random sequences of these steps result in trajectories on the n over bar *,v over bar *\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left({\overline{n } }<^>{*},{\overline{v } }<^>{*}\right)$$\end{document} plane. We prove the existence of limit points for several types of trajectories. Also, we prove that celldensity rho over bar =v over bar *n over bar *\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{\rho }= \frac{{\overline{v } }<^>{*}}{{\overline{n } }<^>{*}}$$\end{document} increases monotonically under any admissible trajectory.
引用
收藏
页码:83 / 94
页数:12
相关论文
共 50 条
  • [41] Evolution and coevolution in mutualistic networks
    Guimaraes, Paulo R., Jr.
    Jordano, Pedro
    Thompson, John N.
    ECOLOGY LETTERS, 2011, 14 (09) : 877 - 885
  • [42] Quantifying vein attributes in massive mudstones (Triassic, SW England): Implications for progressive evolution of opening-mode fracture networks
    Meng, Qingfeng
    Hooker, John N.
    Cartwright, Joe
    MARINE AND PETROLEUM GEOLOGY, 2018, 98 : 523 - 532
  • [43] Controls of dolomitization and bed thickness on fracture networks in Lower Carboniferous carbonates in southern Belgium
    van der Voet, Eva
    Laenen, Ben
    Muchez, Philippe
    Lagrou, David
    Claes, Hannes
    Verbiest, Michael
    Swennen, Rudy
    JOURNAL OF STRUCTURAL GEOLOGY, 2022, 164
  • [44] Bifurcation and chaotic behaviour of a discrete-time variable-territory predator-prey model
    He, Zhimin
    Jiang, Xiaowei
    IMA JOURNAL OF APPLIED MATHEMATICS, 2011, 76 (06) : 899 - 918
  • [45] Transport efficiency and dynamics of hydraulic fracture networks
    Sachau, Till
    Bons, Paul D.
    Gomez-Rivas, Enrique
    FRONTIERS IN PHYSICS, 2015, 3
  • [46] Testing for heterogeneous rates of discrete character evolution on phylogenies
    Revell, Liam J.
    Schliep, Klaus P.
    Mahler, D. Luke
    Ingram, Travis
    JOURNAL OF EVOLUTIONARY BIOLOGY, 2024, 37 (12) : 1591 - 1602
  • [47] Anomalies of flow in fracture networks under compression
    Sahouryeh, E.
    Andruszkiw, M.
    International Journal of Fracture, 2002, 115 (04) : 63 - 68
  • [48] Geometric Evolution of Polygonal Terrain Networks in the Canadian High Arctic: Evidence of Increasing Regularity over Time
    Haltigin, Timothy W.
    Pollard, Wayne H.
    Dutilleul, Pierre
    Osinski, Gordon R.
    PERMAFROST AND PERIGLACIAL PROCESSES, 2012, 23 (03) : 178 - 186
  • [49] Exploring the Fracture Toughness of Tessellated Materials With the Discrete-Element Method
    Abid, Najmul
    Hannard, Florent
    Pro, J. William
    Barthelat, Francois
    JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 2019, 86 (11):
  • [50] A fractal model for characterizing fluid flow in fractured rock masses based on randomly distributed rock fracture networks
    Liu, Richeng
    Jiang, Yujing
    Li, Bo
    Wang, Xiaoshan
    COMPUTERS AND GEOTECHNICS, 2015, 65 : 45 - 55