A discrete time evolution model for fracture networks

被引:2
|
作者
Domokos, Gabor [1 ,2 ]
Regos, Krisztina [1 ,2 ]
机构
[1] Budapest Univ Technol & Econ, Dept Morphol & Geometr Modeling, Muegyet Rkp 3,K220, H-1111 Budapest, Hungary
[2] Budapest Univ Technol & Econ, MTA BME Morphodynam Res Grp, Muegyet Rkp 3,K220, H-1111 Budapest, Hungary
关键词
Fracture network; Evolution model; Discrete dynamical system; Tessellation; PATTERNS;
D O I
10.1007/s10100-022-00838-w
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We examine geological crack patterns using the mean field theory of convex mosaics. We assign the pair n over bar *,v over bar *\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left({\overline{n } }<^>{*},{\overline{v } }<^>{*}\right)$$\end{document} of average corner degrees (Domokos et al. in A two-vertex theorem for normal tilings. Aequat Math , 2022) to each crack pattern and we define two local, random evolutionary steps R-0 and R-1, corresponding to secondary fracture and rearrangement of cracks, respectively. Random sequences of these steps result in trajectories on the n over bar *,v over bar *\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left({\overline{n } }<^>{*},{\overline{v } }<^>{*}\right)$$\end{document} plane. We prove the existence of limit points for several types of trajectories. Also, we prove that celldensity rho over bar =v over bar *n over bar *\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{\rho }= \frac{{\overline{v } }<^>{*}}{{\overline{n } }<^>{*}}$$\end{document} increases monotonically under any admissible trajectory.
引用
收藏
页码:83 / 94
页数:12
相关论文
共 50 条
  • [31] Tectonic fracture stages and evolution model of Longmaxi Formation shale, Dingshan structure,Southeast Sichuan
    Fan C.
    Li H.
    Zhong C.
    Qin Q.
    Hu D.
    Zhang Y.
    He S.
    Zhang W.
    Shiyou Xuebao/Acta Petrolei Sinica, 2018, 39 (04): : 379 - 390
  • [32] A Multi-agent-Based Evolution Model of Innovation Networks in Dynamic Environments
    Long, Qingqi
    Li, Shuliang
    2014 INTERNATIONAL CONFERENCE ON MATHEMATICS AND COMPUTERS IN SCIENCES AND IN INDUSTRY (MCSI 2014), 2014, : 27 - 32
  • [33] A HYBRID CONTINUOUS/DISCRETE-TIME MODEL FOR INVASION DYNAMICS OF ZEBRA MUSSELS IN RIVERS
    Huang, Qihua
    Wang, Hao
    Lewis, Mark A.
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2017, 77 (03) : 854 - 880
  • [34] An optimization model for conductivity of hydraulic fracture networks in the Longmaxi shale, Sichuan basin, Southwest China
    Zhao, Zhihong
    Wu, Kaidi
    Fan, Yu
    Guo, Jianchun
    Zeng, Bo
    Yue, Wenhan
    ENERGY GEOSCIENCE, 2020, 1 (1-2): : 47 - 54
  • [35] Transient behavior of complex fracture networks
    Jia, Pin
    Cheng, Linsong
    Huang, Shijun
    Liu, Hongjun
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2015, 132 : 1 - 17
  • [36] Fluid flow and solute transport simulations in tight geologic formations: Discrete fracture network and continuous time random walk analyses
    Akomolafe, Oluwaseun J.
    Ghanbarian, Behzad
    Hyman, Jeffrey D.
    JOURNAL OF HYDROLOGY, 2024, 635
  • [37] Permeability Evolution of Two-Dimensional Fracture Networks During Shear Under Constant Normal Stiffness Boundary Conditions
    Li, Bo
    Bao, Ruyi
    Wang, Ye
    Liu, Richeng
    Zhao, Cheng
    ROCK MECHANICS AND ROCK ENGINEERING, 2021, 54 (01) : 409 - 428
  • [38] Permeability Evolution of Two-Dimensional Fracture Networks During Shear Under Constant Normal Stiffness Boundary Conditions
    Bo Li
    Ruyi Bao
    Ye Wang
    Richeng Liu
    Cheng Zhao
    Rock Mechanics and Rock Engineering, 2021, 54 : 409 - 428
  • [39] Time-dependent evolution of seizures in a model of mesial temporal lobe epilepsy
    Behr, Charles
    Levesque, Maxime
    Stroh, Thomas
    Avoli, Massimo
    NEUROBIOLOGY OF DISEASE, 2017, 106 : 205 - 213
  • [40] Quantifying Fracture Networks Inferred From Microseismic Point Clouds by a Gaussian Mixture Model With Physical Constraints
    McKean, S. H.
    Priest, J. A.
    Dettmer, J.
    Eaton, D. W.
    GEOPHYSICAL RESEARCH LETTERS, 2019, 46 (20) : 11008 - 11017