A discrete time evolution model for fracture networks

被引:2
|
作者
Domokos, Gabor [1 ,2 ]
Regos, Krisztina [1 ,2 ]
机构
[1] Budapest Univ Technol & Econ, Dept Morphol & Geometr Modeling, Muegyet Rkp 3,K220, H-1111 Budapest, Hungary
[2] Budapest Univ Technol & Econ, MTA BME Morphodynam Res Grp, Muegyet Rkp 3,K220, H-1111 Budapest, Hungary
关键词
Fracture network; Evolution model; Discrete dynamical system; Tessellation; PATTERNS;
D O I
10.1007/s10100-022-00838-w
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We examine geological crack patterns using the mean field theory of convex mosaics. We assign the pair n over bar *,v over bar *\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left({\overline{n } }<^>{*},{\overline{v } }<^>{*}\right)$$\end{document} of average corner degrees (Domokos et al. in A two-vertex theorem for normal tilings. Aequat Math , 2022) to each crack pattern and we define two local, random evolutionary steps R-0 and R-1, corresponding to secondary fracture and rearrangement of cracks, respectively. Random sequences of these steps result in trajectories on the n over bar *,v over bar *\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left({\overline{n } }<^>{*},{\overline{v } }<^>{*}\right)$$\end{document} plane. We prove the existence of limit points for several types of trajectories. Also, we prove that celldensity rho over bar =v over bar *n over bar *\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{\rho }= \frac{{\overline{v } }<^>{*}}{{\overline{n } }<^>{*}}$$\end{document} increases monotonically under any admissible trajectory.
引用
收藏
页码:83 / 94
页数:12
相关论文
共 50 条
  • [21] A distributed hypergraph model for simulating the evolution of large coauthorship networks
    Xie, Zheng
    SCIENTOMETRICS, 2021, 126 (06) : 4609 - 4638
  • [22] A Discrete Fracture Network Model With Stress-Driven Nucleation: Impact on Clustering, Connectivity, and Topology
    Lavoine, Etienne
    Davy, Philippe
    Darcel, Caroline
    Munier, Raymond
    FRONTIERS IN PHYSICS, 2020, 8
  • [23] Estimation of permeability of 3-D discrete fracture networks: An alternative possibility based on trace map analysis
    Huang, Na
    Jiang, Yujing
    Liu, Richeng
    Li, Bo
    ENGINEERING GEOLOGY, 2017, 226 : 12 - 19
  • [24] Robust estimation of the fracture diameter distribution from the true trace length distribution in the Poisson-disc discrete fracture network model
    Hekmatnejad, Amin
    Emery, Xavier
    Vallejos, Javier A.
    COMPUTERS AND GEOTECHNICS, 2018, 95 : 137 - 146
  • [25] The oil production performance analysis using discrete fracture network model with simulated annealing inverse method
    Jang, Young Ho
    Lee, Tae Hun
    Jung, Ji Hun
    Kwon, Sun Il
    Sung, Won Mo
    GEOSCIENCES JOURNAL, 2013, 17 (04) : 489 - 496
  • [26] The oil production performance analysis using discrete fracture network model with simulated annealing inverse method
    Young Ho Jang
    Tae Hun Lee
    Ji Hun Jung
    Sun Il Kwon
    Won Mo Sung
    Geosciences Journal, 2013, 17 : 489 - 496
  • [27] The role of aperture heterogeneity in incipient karst evolution in natural fracture networks: Insights from numerical simulations
    Wang, Xiaoguang
    Aliouache, Mohammed
    Wang, Yanyong
    Lei, Qinghua
    Jourde, Herve
    ADVANCES IN WATER RESOURCES, 2021, 156
  • [28] A permeability model of shale complex fracture networks considering slippage effect and tortuosity distribution
    Wang F.
    Cheng H.
    Zhongnan Daxue Xuebao (Ziran Kexue Ban)/Journal of Central South University (Science and Technology), 2020, 51 (12): : 3454 - 3464
  • [29] Fractal analysis of the evolution of a fracture network in a granite outcrop, SE Korea
    Park, Seung-lk
    Kim, Young-Seog
    Ryoo, Chung-Ryul
    Sanderson, David J.
    GEOSCIENCES JOURNAL, 2010, 14 (02) : 201 - 215
  • [30] Discrete Ricci curvatures for directed networks
    Saucan, Emil
    Sreejith, R. P.
    Vivek-Ananth, R. P.
    Jost, Juergen
    Samal, Areejit
    CHAOS SOLITONS & FRACTALS, 2019, 118 : 347 - 360