A discrete time evolution model for fracture networks

被引:2
|
作者
Domokos, Gabor [1 ,2 ]
Regos, Krisztina [1 ,2 ]
机构
[1] Budapest Univ Technol & Econ, Dept Morphol & Geometr Modeling, Muegyet Rkp 3,K220, H-1111 Budapest, Hungary
[2] Budapest Univ Technol & Econ, MTA BME Morphodynam Res Grp, Muegyet Rkp 3,K220, H-1111 Budapest, Hungary
关键词
Fracture network; Evolution model; Discrete dynamical system; Tessellation; PATTERNS;
D O I
10.1007/s10100-022-00838-w
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We examine geological crack patterns using the mean field theory of convex mosaics. We assign the pair n over bar *,v over bar *\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left({\overline{n } }<^>{*},{\overline{v } }<^>{*}\right)$$\end{document} of average corner degrees (Domokos et al. in A two-vertex theorem for normal tilings. Aequat Math , 2022) to each crack pattern and we define two local, random evolutionary steps R-0 and R-1, corresponding to secondary fracture and rearrangement of cracks, respectively. Random sequences of these steps result in trajectories on the n over bar *,v over bar *\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left({\overline{n } }<^>{*},{\overline{v } }<^>{*}\right)$$\end{document} plane. We prove the existence of limit points for several types of trajectories. Also, we prove that celldensity rho over bar =v over bar *n over bar *\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{\rho }= \frac{{\overline{v } }<^>{*}}{{\overline{n } }<^>{*}}$$\end{document} increases monotonically under any admissible trajectory.
引用
收藏
页码:83 / 94
页数:12
相关论文
共 50 条
  • [1] A discrete time evolution model for fracture networks
    Gábor Domokos
    Krisztina Regős
    Central European Journal of Operations Research, 2024, 32 : 83 - 94
  • [2] Simulation of solute transport in discrete fracture networks using the time domain random walk method
    Bodin, J
    Porel, G
    Delay, F
    EARTH AND PLANETARY SCIENCE LETTERS, 2003, 208 (3-4) : 297 - 304
  • [3] Vester's Sensitivity Model for Genetic Networks with Time-Discrete Dynamics
    Moreno, Liana Amaya
    Defterli, Ozlem
    Fuegenschuh, Armin
    Weber, Gerhard-Wilhelm
    ALGORITHMS FOR COMPUTATIONAL BIOLOGY, 2014, 8542 : 35 - 46
  • [4] Impact of a stochastic sequential initiation of fractures on the spatial correlations and connectivity of discrete fracture networks
    Bonneau, Francois
    Caumon, Guillaume
    Renard, Philippe
    JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 2016, 121 (08) : 5641 - 5658
  • [5] Fracture network numerical well test model based on the discrete-fracture model
    Wan, Yizhao
    Liu, Yuewu
    Ouyang, Weiping
    Niu, Congcong
    Han, Guofeng
    Liu, Wenhao
    FRONTIERS IN FLUID MECHANICS RESEARCH, 2015, 126 : 512 - 516
  • [6] Evolution of dilatant fracture networks in a normal fault - Evidence from 4D model experiments
    Holland, Marc
    van Gent, Heijn
    Bazalgette, Loic
    Yassir, Najwa
    Strating, Eilard H. Hoogerduijn
    Urai, Janos L.
    EARTH AND PLANETARY SCIENCE LETTERS, 2011, 304 (3-4) : 399 - 406
  • [7] Characterization of discrete fracture networks with deep-learning based hydrogeophysical inversion
    Deng, Yaping
    Kang, Xueyuan
    Ma, Haichun
    Qian, Jiazhong
    Ma, Lei
    Luo, Qiankun
    JOURNAL OF HYDROLOGY, 2024, 631
  • [8] The role of fracture branching in the evolution of fracture networks: An outcrop study of the Jurassic Navajo Sandstone, southern Utah
    Surpless, Benjamin
    McKeighan, Caroline
    JOURNAL OF STRUCTURAL GEOLOGY, 2022, 161
  • [9] The Discrete Evolution Model of Bak and Sneppen is Conjugate to the Classical Contact Process
    Christoph Bandt
    Journal of Statistical Physics, 2005, 120 : 685 - 693
  • [10] The discrete evolution model of Bak and Sneppen is conjugate to the classical contact process
    Bandt, C
    JOURNAL OF STATISTICAL PHYSICS, 2005, 120 (3-4) : 685 - 693