Artificial intelligence in liver cancer research: a scientometrics analysis of trends and topics

被引:2
作者
Rezaee-Zavareh, Mohammad Saeid [1 ]
Kim, Naomy [2 ]
Yeo, Yee Hui [2 ]
Kim, Hyunseok [2 ,3 ]
Lee, Jeong Min [4 ]
Sirlin, Claude B. [5 ]
Taouli, Bachir [6 ,7 ]
Saouaf, Rola [8 ]
Wachsman, Ashley M. [8 ]
Noureddin, Mazen [2 ,3 ]
Wang, Zhiping [9 ]
Moore, Jason [9 ]
Li, Debiao [10 ]
Singal, Amit G. [11 ]
Yang, Ju Dong [2 ,3 ,12 ]
机构
[1] Middle East Liver Dis Ctr, Tehran, Iran
[2] Cedars Sinai Med Ctr, Karsh Div Gastroenterol & Hepatol, Los Angeles, CA 90048 USA
[3] Cedars Sinai Med Ctr, Comprehens Transplant Ctr, Los Angeles, CA 90048 USA
[4] Seoul Natl Univ Hosp, Dept Radiol, Seoul, South Korea
[5] Univ Calif San Diego, Dept Radiol, Liver Imaging Grp, San Diego, CA 92122 USA
[6] Icahn Sch Med Mt Sinai, Biomed Engn & Imaging Inst BMEII, New York, NY USA
[7] Icahn Sch Med Mt Sinai, Dept Diagnost Mol & Intervent Radiol, New York, NY USA
[8] Cedars Sinai Med Ctr, Dept Radiol, Los Angeles, CA USA
[9] Cedars Sinai Med Ctr, Dept Computat Biomed, Los Angeles, CA USA
[10] Cedars Sinai Med Ctr, Biomed Imaging Res Inst, Dept Biomed Sci, Los Angeles, CA USA
[11] Univ Texas Southwestern Med Ctr, Dept Internal Med, Dallas, TX USA
[12] Cedars Sinai Med Ctr, Samuel Oschin Comprehens Canc Inst, Radiat Oncol, Los Angeles, CA 90048 USA
关键词
liver cancer; artificial intelligence; machine learning; scientometrics; publication trend analysis;
D O I
10.3389/fonc.2024.1355454
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Background and aims: With the rapid growth of artificial intelligence (AI) applications in various fields, understanding its impact on liver cancer research is paramount. This scientometrics project aims to investigate publication trends and topics in AI-related publications in liver cancer. Materials and Methods: We employed a search strategy to identify AI-related publications in liver cancer using Scopus database. We analyzed the number of publications, author affiliations, and journals that publish AI-related publications in liver cancer. Finally, the publications were grouped based on intended application. Results: We identified 3950 eligible publications (2695 articles, 366 reviews, and 889 other document types) from 1968 to August 3, 2023. There was a 12.7-fold increase in AI-related publications from 2013 to 2022. By comparison, the number of total publications on liver cancer increased by 1.7-fold. Our analysis revealed a significant shift in trends of AI-related publications on liver cancer in 2019. We also found a statistically significant consistent increase in numbers of AI-related publications over time (tau = 0.756, p < 0.0001). Eight (53%) of the top 15 journals with the most publications were radiology journals. The largest number of publications were from China (n=1156), the US (n=719), and Germany (n=236). The three most common publication categories were "medical image analysis for diagnosis" (37%), "diagnostic or prognostic biomarkers modeling & bioinformatics" (19%), and "genomic or molecular analysis" (18%). Conclusion: Our study reveals increasing interest in AI for liver cancer research, evidenced by a 12.7-fold growth in related publications over the past decade. A common application of AI is in medical imaging analysis for various purposes. China, the US, and Germany are leading contributors.
引用
收藏
页数:10
相关论文
共 30 条
[1]   On the role of artificial intelligence in medical imaging of COVID-19 [J].
Born, Jannis ;
Beymer, David ;
Rajan, Deepta ;
Coy, Adam ;
Mukherjee, Vandana V. ;
Manica, Matteo ;
Prasanna, Prasanth ;
Ballah, Deddeh ;
Guindy, Michal ;
Shaham, Dorith ;
Shah, Pallav L. ;
Karteris, Emmanouil ;
Robertus, Jan L. ;
Gabrani, Maria ;
Rosen-Zvi, Michal .
PATTERNS, 2021, 2 (06)
[2]   Application of Artificial Intelligence for Diagnosis and Risk Stratification in NAFLD and NASH: The State of the Art [J].
Dinani, Amreen M. ;
Kowdley, Kris V. ;
Noureddin, Mazen .
HEPATOLOGY, 2021, 74 (04) :2233-2240
[3]   An overview of artificial intelligence in oncology [J].
Farina, Eduardo ;
Nabhen, Jacqueline J. ;
Dacoregio, Maria Inez ;
Batalini, Felipe ;
Moraes, Fabio Y. .
FUTURE SCIENCE OA, 2022, 8 (04)
[4]   Radiomics: Images Are More than Pictures, They Are Data [J].
Gillies, Robert J. ;
Kinahan, Paul E. ;
Hricak, Hedvig .
RADIOLOGY, 2016, 278 (02) :563-577
[5]  
Han RY, 2023, medRxiv, DOI [10.1101/2023.09.12.23295381, DOI 10.1101/2023.09.12.23295381, 10.1101/2023.09.12.23295381]
[6]   Systematic review: Radiomics for the diagnosis and prognosis of hepatocellular carcinoma [J].
Harding-Theobald, Emily ;
Louissaint, Jeremy ;
Maraj, Bharat ;
Cuaresma, Edward ;
Townsend, Whitney ;
Mendiratta-Lala, Mishal ;
Singal, Amit G. ;
Su, Grace L. ;
Lok, Anna S. ;
Parikh, Neehar D. .
ALIMENTARY PHARMACOLOGY & THERAPEUTICS, 2021, 54 (07) :890-901
[7]   Literature analysis of artificial intelligence in biomedicine [J].
Hulsen, Tim .
ANNALS OF TRANSLATIONAL MEDICINE, 2022,
[8]   Application of artificial intelligence in the diagnosis and treatment of hepatocellular carcinoma: A review [J].
Jimenez Perez, Miguel ;
Grande, Rocio Gonzalez .
WORLD JOURNAL OF GASTROENTEROLOGY, 2020, 26 (37) :5617-5628
[9]   Six application scenarios of artificial intelligence in the precise diagnosis and treatment of liver cancer [J].
Lang, Qi ;
Zhong, Chongli ;
Liang, Zhiyun ;
Zhang, Yizhou ;
Wu, Baokang ;
Xu, Feng ;
Cong, Ling ;
Wu, Shuodong ;
Tian, Yu .
ARTIFICIAL INTELLIGENCE REVIEW, 2021, 54 (07) :5307-5346
[10]   Deep learning as a tool for increased accuracy and efficiency of histopathological diagnosis [J].
Litjens, Geert ;
Sanchez, Clara I. ;
Timofeeva, Nadya ;
Hermsen, Meyke ;
Nagtegaal, Iris ;
Kovacs, Iringo ;
Hulsbergen-van de Kaa, Christina ;
Bult, Peter ;
van Ginneken, Bram ;
van der Laak, Jeroen .
SCIENTIFIC REPORTS, 2016, 6