Bacteriophages suppress CRISPR-Cas immunity using RNA-based anti-CRISPRs

被引:37
作者
Camara-Wilpert, Sarah [1 ]
Mayo-Munoz, David [2 ,3 ,4 ]
Russel, Jakob
Fagerlund, Robert D. [2 ,3 ,4 ,5 ]
Madsen, Jonas S.
Fineran, Peter C. [2 ,3 ,4 ,5 ]
Sorensen, Soren J.
Pinilla-Redondo, Rafael [1 ]
机构
[1] Univ Copenhagen, Microbiol Sect, Copenhagen, Denmark
[2] Univ Otago, Dept Microbiol & Immunol, Dunedin, New Zealand
[3] Univ Otago, Genet Otago, Dunedin, New Zealand
[4] Univ Otago, Maurice Wilkins Ctr Mol Biodiscovery, Dunedin, New Zealand
[5] Univ Otago, Bioprotect Aotearoa, Dunedin, New Zealand
关键词
PROCESSES PRE-CRRNA; SURVEILLANCE COMPLEX; VIRAL SUPPRESSORS; IN-VIVO; SEQUENCE; PROTEIN; PSEUDOMONAS; MECHANISM; CONSTRUCTION; RECOGNITION;
D O I
10.1038/s41586-023-06612-5
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Many bacteria use CRISPR-Cas systems to combat mobile genetic elements, such as bacteriophages and plasmids(1). In turn, these invasive elements have evolved anti-CRISPR proteins to block host immunity(2,3). Here we unveil a distinct type of CRISPR-Cas Inhibition strategy that is based on small non-coding RNA anti-CRISPRs (Racrs). Racrs mimic the repeats found in CRISPR arrays and are encoded in viral genomes as solitary repeat units(4). We show that a prophage-encoded Racr strongly inhibits the type I-F CRISPR-Cas system by interacting specifically with Cas6f and Cas7f, resulting in the formation of an aberrant Cas subcomplex. We identified Racr candidates for almost all CRISPR-Cas types encoded by a diverse range of viruses and plasmids, often in the genetic context of other anti-CRISPR genes(5). Functional testing of nine candidates spanning the two CRISPR-Cas classes confirmed their strong immune inhibitory function. Our results demonstrate that molecular mimicry of CRISPR repeats is a widespread anti-CRISPR strategy, which opens the door to potential biotechnological applications(6).
引用
收藏
页码:601 / +
页数:25
相关论文
共 78 条
[1]   The CRISPR tool kit for genome editing and beyond [J].
Adli, Mazhar .
NATURE COMMUNICATIONS, 2018, 9
[2]   PHASTER: a better, faster version of the PHAST phage search tool [J].
Arndt, David ;
Grant, Jason R. ;
Marcu, Ana ;
Sajed, Tanvir ;
Pon, Allison ;
Liang, Yongjie ;
Wishart, David S. .
NUCLEIC ACIDS RESEARCH, 2016, 44 (W1) :W16-W21
[3]   Small nucleic acids and the path to the clinic for anti-CRISPR [J].
Barkau, Christopher L. ;
O'Reilly, Daniel ;
Eddington, Seth B. ;
Damha, Masad J. ;
Gagnon, Keith T. .
BIOCHEMICAL PHARMACOLOGY, 2021, 189
[4]   Rationally Designed Small Nucleic Acid-Based Inhibitors of CRISPR-Cas9 [J].
Barkau, Christopher L. ;
O'Reilly, Daniel ;
Rohilla, Kushal J. ;
Damha, Masad J. ;
Gagnon, Keith T. .
NUCLEIC ACID THERAPEUTICS, 2019, 29 (03) :136-147
[5]  
Benz F, 2023, bioRxiv, DOI [10.1101/2023.06.23.546257, 10.1101/2023.06.23.546257, DOI 10.1101/2023.06.23.546257]
[6]   Strategies developed by bacteria and virus for protection from the human complement system [J].
Blom, AM .
SCANDINAVIAN JOURNAL OF CLINICAL & LABORATORY INVESTIGATION, 2004, 64 (05) :479-495
[7]   Viral Evasion of a Bacterial Suicide System by RNA-Based Molecular Mimicry Enables Infectious Altruism [J].
Blower, Tim R. ;
Evans, Terry J. ;
Przybilski, Rita ;
Fineran, Peter C. ;
Salmond, George P. C. .
PLOS GENETICS, 2012, 8 (10)
[8]   Trimmomatic: a flexible trimmer for Illumina sequence data [J].
Bolger, Anthony M. ;
Lohse, Marc ;
Usadel, Bjoern .
BIOINFORMATICS, 2014, 30 (15) :2114-2120
[9]   Bacteriophage genes that inactivate the CRISPR/Cas bacterial immune system [J].
Bondy-Denomy, Joe ;
Pawluk, April ;
Maxwell, Karen L. ;
Davidson, Alan R. .
NATURE, 2013, 493 (7432) :429-U181
[10]   The Discovery, Mechanisms, and Evolutionary Impact of Anti-CRISPRs [J].
Borges, Adair L. ;
Davidson, Alan R. ;
Bondy-Denomy, Joseph .
ANNUAL REVIEW OF VIROLOGY, VOL 4, 2017, 4 :37-59